Stationary distribution and extinction of a stochastic SIRS epidemic model with information intervention

被引:0
作者
Kangbo Bao
Qimin Zhang
机构
[1] Ningxia University,School of Mathematics and Statistics
来源
Advances in Difference Equations | / 2017卷
关键词
SIRS epidemic model; information intervention; environmental noise; stationary distribution; extinction;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new SIRS epidemic model which considers the influence of information intervention and environmental noise is studied. The study shows that information intervention and white noise have great effects on the disease. First, we show that there is global existence and positivity of the solution. Then, we prove that the stochastic basic production Rs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathscr{R}_{s}$\end{document} is a threshold which determines the extinction or persistence of the disease. When the intensity of noise is large, we obtain Rs<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathscr{R}_{s}<1$\end{document} and the disease will die out. When the intensity of noise is small, then Rs>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathscr{R}_{s}>1$\end{document} and a sufficient condition for the existence of stationary distribution is obtained, which means the disease is prevalent. Finally, the main results are illustrated by numerical simulations.
引用
收藏
相关论文
共 60 条
[1]  
Joshi H(2008)Modeling the effect of information campaigns on the HIV epidemic in Uganda Math. Biosci. Eng. 5 757-770
[2]  
Lenhart S(2013)Modeling of pseudo-rational exemption to vaccination for SEIR disease J. Math. Anal. Appl. 404 385-398
[3]  
Albright K(2015)Media impact switching surface during an infectious disease outbreak Sci. Rep. 5 103-119
[4]  
Gipson K(2015)Optimal control of an SIR model with changing behavior through an education campaign Electron. J. Differ. Equ. 50 510-517
[5]  
Buonomo B(2017)Modeling the role of information and limited optimal treatment on disease prevalence J. Theor. Biol. 414 876-902
[6]  
d’Onofrio A(2015)A stochastic SIR epidemic model with density dependent birth rate Adv. Differ. Equ. 2015 95-110
[7]  
Lacitignola D(2017)Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence Physica A 469 140-153
[8]  
Xiao Y(2011)A stochastic differential equation SIS epidemic model SIAM J. Appl. Math. 71 87-93
[9]  
Tang S(2002)Environmental noise suppresses explosion in population dynamics Stoch. Process. Appl. 97 7463-7502
[10]  
Wu J(2016)Stochastic dynamics of an SEIS epidemic model Adv. Differ. Equ. 2016 1705-1743