Multiple filamentation of collimated laser radiation in water and glass

被引:4
作者
Apeksimov D.V. [1 ]
Golik S.S. [2 ,3 ]
Zemlyanov A.A. [1 ]
Iglakova A.N. [1 ]
Kabanov A.M. [1 ]
Kuchinskaya O.I. [1 ,4 ]
Matvienko G.G. [1 ,4 ]
Oshlakov V.K. [1 ]
Petrov A.V. [1 ]
Sokolova E.B. [1 ]
机构
[1] V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, pl. Akademika Zueva 1, Tomsk
[2] Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, ul. Radio 5, Vladivostok
[3] Far Eastern Federal University, ul. Sukhanova 8, Vladivostok
[4] Tomsk State University, pr. Lenina 36, Tomsk
关键词
femtosecond pulse; glass; laser radiation; multiple filamentation; self-focusing; water;
D O I
10.1134/S1024856016020020
中图分类号
学科分类号
摘要
Results of an experimental study of spatial parameters of the region of multiple filamentation of gigaand terawatt pulses of a Ti:Sapphire laser in glass and water are described. The pulse-power dependencies of the coordinates of the filamentation region, the number of filaments, their distribution along the laser beam axis, and the mean length of the filaments are presented. It is shown that the spatial parameters of the filamentation region are qualitatively similar in water and glass. It is found that the number of filaments along the region of multiple filamentation is a unimodal distribution. When increasing the radiation power, the length of individual filaments in the region of multiple filamentation is reduced, and their diameters are quasi-constant at all power values implemented in the experiment. When attaining a certain power of laser pulses with a Gaussian energy-density distribution, the filamentation region takes the shape of a hollow cone with the apex directed to the radiation source. © 2016, Pleiades Publishing, Ltd.
引用
收藏
页码:135 / 140
页数:5
相关论文
共 13 条
[1]  
Marburger J.H., Self-focusing: Theory, Prog. Quantum. Electron., 4, 1, pp. 35-110, (1975)
[2]  
Geints Y.E., Zemlyanov A.A., Characteristics of filaments during high-power femtosecond laser radiation propagation in air and water: I. Qualitative analysis, Atmos. Ocean. Opt., 24, 2, pp. 144-151, (2011)
[3]  
Geints Y.E., Zemlyanov A.A., Characteristics of filaments at high-power femtosecond laser radiation propagation in air and water: II. Numerical simulation, Atmos. Ocean. Opt., 24, 2, pp. 152-155, (2011)
[4]  
Martynovich E.F., Kuznetsov A.V., Kirpichnikov A.V., Pestryakov E.V., Bagaev S.N., Formation of luminescent emitters by intense laser radiation in transparent media, Quantum Electron., 43, 5, pp. 463-466, (2013)
[5]  
Dergachev A.A., Kadan V.N., Shlenov S.A., Interaction of noncollinear femtosecond laser filaments in sapphire, Quantum Electron., 42, 2, pp. 125-129, (2012)
[6]  
Kulchin Y.N., Vitrik O.B., Chekhlenok A.A., Zhizhchenko A.Y., Proschenko D.Y., Mirochnik A.G., Guohui L., Photoimaging of the multiple filamentation of femtosecond laser pulses in poly(methyl methacrylate) doped with 2,2-difluoro-4(9-anthracyl)-6-methyl-1,3,2-dioxaborine, Quantum Electron., 43, 12, pp. 1118-1121, (2013)
[7]  
Alfano R.R., Shapiro S.L., Observation of selfphase modulation and small-scale filaments in crystals and glasses, Phys. Rev. Lett., 24, 11, (1970)
[8]  
Schroeder H., Liu J., Chin S.L., From random to controlled small-scale filamentation in water, Opt. Express, 12, 20, pp. 4768-4774, (2004)
[9]  
Liu J., Schroeder H., Chin S.L., Li R., Yu W., Xu Z., Space-frequency coupling, conical waves and small-scale filamentation in water, Phys. Rev., 72, 5, (2005)
[10]  
Liu J., Schroeder H., Chin S.L., Li R., Yu W., Xu Z., Control and organization of multi-filamentation of femtosecond laser pulses in optical media, J. Korean Phys. Soc., 51, 4, pp. 1572-1577, (2007)