Short-range spatial variability of soil δ15N natural abundance – effects on symbiotic N2-fixation estimates in pea

被引:0
|
作者
L. Holdensen
H. Hauggaard-Nielsen
E. S. Jensen
机构
[1] Technical University of Denmark,Biosystems Department, RISØ National Laboratory
来源
Plant and Soil | 2007年 / 298卷
关键词
Short-range; Natural abundance; N; -fixation; δ; N variability;
D O I
暂无
中图分类号
学科分类号
摘要
The δ15N natural abundance (‰) of the total soil N pool varies at the landscape level, but knowledge on short-range variability and consequences for the reliability of isotopic methods are poorly understood. The short-range spatial variability of soil δ15N natural abundance as revealed by the 15N abundance in spring barley and N2-fixing pea was measured within the 0.15–4 m scale at flowering and at maturity. The short-range spatial variability of soil δ15N natural abundance and symbiotic nitrogen fixation were high at both growth stages. Along a 4-m row, the δ15N natural abundance in barley reference plants varied up to 3.9‰, and sometimes this variability was observed even between plants grown only 30 cm apart. The δ15N natural abundance in pea varied up to 1.4‰ within the 4-m row. The estimated percentage of nitrogen derived from the atmosphere (%Ndfa) varied from 73–89% at flowering and from 57–95% at maturity. When increasing the sampling area from 0.01 m2 (single plants) and up to 0.6 m2 (14 plants) the %Ndfa coefficient of variation (CV) declined from 5 to 2% at flowering and from 12 to 2% at maturity. The implications of the short-range variability in δ15N natural-abundance are that estimates of symbiotic N2-fixation can be obtained from the natural abundance method if at least half a square meter of crop and reference plants is sampled for the isotopic analysis. In fields with small amounts of representative reference crops (weeds) it might be necessary to sow in reference crop species to secure satisfying N2-fixation estimates.
引用
收藏
页码:265 / 272
页数:7
相关论文
共 50 条
  • [1] Short-range spatial variability of soil δ15N natural abundance -: effects on symbiotic N2-fixation estimates in pea
    Holdensen, L.
    Hauggaard-Nielsen, H.
    Jensen, E. S.
    PLANT AND SOIL, 2007, 298 (1-2) : 265 - 272
  • [2] Spatial variability of symbiotic N2 fixation in grass-white clover pastures estimated by the 15N isotope dilution method and the natural 15N abundance method
    J.P. Hansen
    F.P. Vinther
    Plant and Soil, 2001, 230 : 257 - 266
  • [3] Spatial variability of symbiotic N2 fixation in grass-white clover pastures estimated by the 15N isotope dilution method and the natural 15N abundance method
    Hansen, JP
    Vinther, FP
    PLANT AND SOIL, 2001, 230 (02) : 257 - 266
  • [4] Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance
    A. Oberson
    S. Nanzer
    C. Bosshard
    D. Dubois
    P. Mäder
    E. Frossard
    Plant and Soil, 2007, 290 : 69 - 83
  • [5] Do techniques based on 15N enrichment and 15N natural abundance give consistent estimates of the symbiotic dependence of N2-fixing plants?
    Phillip M. Chalk
    Caio T. Inácio
    Fabiano C. Balieiro
    Janaina R. C. Rouws
    Plant and Soil, 2016, 399 : 415 - 426
  • [6] Do techniques based on 15N enrichment and 15N natural abundance give consistent estimates of the symbiotic dependence of N2-fixing plants?
    Chalk, Phillip M.
    Inacio, Caio T.
    Balieiro, Fabiano C.
    Rouws, Janaina R. C.
    PLANT AND SOIL, 2016, 399 (1-2) : 415 - 426
  • [7] δ15N as an indicator of N2-fixation by cyanobacterial mats in tropical marshes
    Eliška Rejmánková
    Jaroslava Komárková
    Marcel Rejmánek
    Biogeochemistry, 2004, 67 : 353 - 368
  • [8] Strategy for the Sampling of Sugarcane Plants for the Reliable Quantification of N2 Fixation Using 15N Natural Abundance
    Edevaldo de Castro Monteiro
    Cleudison Gabriel Nascimento da Silva
    Márcio dos reis Martins
    Veronica Massena Reis
    Robert Michael Boddey
    Bruno José Rodrigues Alves
    Segundo Urquiaga
    Journal of Soil Science and Plant Nutrition, 2021, 21 : 2741 - 2752
  • [9] Symbiotic nitrogen fixation in a tropical rainforest:: 15N natural abundance measurements supported by experimental isotopic enrichment
    Pons, Thijs L.
    Perreijn, Kristel
    van Kessel, Chris
    Werger, Marinus J. A.
    NEW PHYTOLOGIST, 2007, 173 (01) : 154 - 167
  • [10] Appraisal of 15N enrichment and 15N natural abundance methods for estimating N2 fixation by understorey Acacia leiocalyx and A. disparimma in a native forest of subtropical Australia
    Shahla Hosseini Bai
    Fangfang Sun
    Zhihong Xu
    Timothy J. Blumfield
    Chengrong Chen
    Clyde Wild
    Journal of Soils and Sediments, 2012, 12 : 653 - 662