Completely Effective Error Bounds for Stirling Numbers of the First and Second Kinds via Poisson Approximation

被引:0
作者
Richard Arratia
Stephen DeSalvo
机构
[1] University of Southern California,Department of Mathematics
[2] University of California Los Angeles,Department of Mathematics
来源
Annals of Combinatorics | 2017年 / 21卷
关键词
Stirling numbers of the first kind; Stirling numbers of the second kind; Poisson approximation; Stein’s method; asymptotic enumeration of combinatorial sequences; completely effective error estimates; rook numbers; file numbers; 05A16; 60C05; 11B73;
D O I
暂无
中图分类号
学科分类号
摘要
We provide completely effective error estimates for Stirling numbers of the first and second kinds, denoted by s(n, m) and S(n, m), respectively. These bounds are useful for values of m≥n-O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m\geq n-O(\sqrt{n})}$$\end{document}. An application of our Theorem 3.2 yields, for example, s(1012,1012-2×106)/1035664464∈[1.87669,1.876982],S(1012,1012-2×106)/1035664463∈[1.30121,1.306975].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{ll}{s({10^{12}}, {10^{12}}-2 \times{10^6})/{10^{35664464}} \in [1.87669, 1.876982],}\\{S({10^{12}}, {10^{12}}-2 \times{10^6})/{10^{35664463}} \in [1.30121, 1.306975]}.\end{array}$$\end{document}The bounds are obtained via Chen-Stein Poisson approximation, using an interpretation of Stirling numbers as the number of ways of placing non-attacking rooks on a chess board. As a corollary to Theorem 3.2, summarized in Proposition 2.4, we obtain two simple and explicit asymptotic formulas, one for each of s(n, m) and S(n, m), for the parametrization m=n-tna,0≤a≤12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m = n-t {n^a}, 0 \leq a \leq \frac{1}{2}}$$\end{document}. These asymptotic formulas agree with the ones originally observed by Moser and Wyman in the range 0<a<12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < a < \frac{1}{2}}$$\end{document}, and they connect with a recent asymptotic expansion by Louchard for 12<a<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{2} < a < 1}$$\end{document}, hence filling the gap at a=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a = \frac{1}{2}}$$\end{document}. We also provide a generalization applicable to rook and file numbers.
引用
收藏
页码:1 / 24
页数:23
相关论文
共 22 条
[1]  
Chelluri R.(2000)Asymptotic estimates for generalized Stirling numbers Analysis (Munich) 20 1-13
[2]  
Richmond L.(1999)On Stirling numbers for complex arguments and Hankel contours SIAM J. Discrete Math. 12 155-159
[3]  
Temme N.(1986)-counting rook configurations and a formula of Frobenius J. Combin. Theory Ser. A 41 246-275
[4]  
Flajolet P.(1957)Saddle-point methods for the multinomial distribution Ann. Math. Statistics 28 861-881
[5]  
Prodinger H.(1961)An asymptotic formula for the differences of the powers at zero Ann. Math. Statistics 32 249-256
[6]  
Garsia A.M.(1948)Note on an asymptotic expansion of the Ann. Math. Statistics 19 273-277
[7]  
Remmel J.B.(1995)th difference of zero J. Combin. Theory Ser. A 71 343-351
[8]  
Good I.J.(1946)Asymptotic expansions for the Stirling numbers of the first kind Duke Math. J. 13 259-268
[9]  
Good I.J.(2010)The problem of the rooks and its applications Discrete Math. Theor. Comput. Sci. 12 167-184
[10]  
Hsu L.C.(2013)Asymptotics of the Stirling numbers of the first kind revisited: a saddle point approach Appl. Anal. Discrete Math. 7 193-210