Deep learning, radiomics and radiogenomics applications in the digital breast tomosynthesis: a systematic review

被引:0
作者
Sadam Hussain
Yareth Lafarga-Osuna
Mansoor Ali
Usman Naseem
Masroor Ahmed
Jose Gerardo Tamez-Peña
机构
[1] Tecnológico de Monterrey,School of Engineering and Sciences
[2] James Cook University,College of Science and Engineering
[3] Tecnológico de Monterrey,School of Medicine and Health Sciences
来源
BMC Bioinformatics | / 24卷
关键词
Deep learning; Radiomics; Radiogenomics; Digital breast tomosynthesis; Breast cancer; Lesion detection; Lesion classification; Medical imaging;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Deep learning model to predict Ki-67 expression of breast cancer using digital breast tomosynthesis
    Oba, Ken
    Adachi, Maki
    Kobayashi, Tomoya
    Takaya, Eichi
    Shimokawa, Daiki
    Fukuda, Toshinori
    Takahashi, Kengo
    Yagishita, Kazuyo
    Ueda, Takuya
    Tsunoda, Hiroko
    BREAST CANCER, 2024,
  • [32] Digital Breast Tomosynthesis: A Technological Review
    Males, Matija
    Mileta, Danijel
    Grgic, Mislav
    53RD INTERNATIONAL SYMPOSIUM ELMAR-2011, 2011, : 41 - 45
  • [33] Denoising digital breast tomosynthesis projections using deep learning with synthetic data as training set
    de Araujo, Darlan M. N.
    Salvadeo, Denis H. P.
    de Paula, Davi D.
    JOURNAL OF MEDICAL IMAGING, 2023, 10 (03)
  • [34] Development of an Intratumoral and Peritumoral Radiomics Nomogram Using Digital Breast Tomosynthesis for Preoperative Assessment of Lymphovascular Invasion in Invasive Breast Cancer
    Xu, Maolin
    Yang, Huimin
    Sun, Jia
    Hao, Haifeng
    Li, Xiaojing
    Liu, Guifeng
    ACADEMIC RADIOLOGY, 2024, 31 (05) : 1748 - 1761
  • [35] A deep learning method trained on synthetic data for digital breast tomosynthesis reconstruction
    Quillent, Arnaud
    Bismuth, Vincent
    Bloch, Isabelle
    Kervazo, Christophe
    Ladjal, Said
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1813 - 1825
  • [36] Clinical applications of radiomics and deep learning in breast and lung cancer: A narrative literature review on current evidence and future perspectives
    Ferro, Alessandra
    Bottosso, Michele
    Dieci, Maria Vittoria
    Scagliori, Elena
    Miglietta, Federica
    Aldegheri, Vittoria
    Bonanno, Laura
    Caumo, Francesca
    Guarneri, Valentina
    Griguolo, Gaia
    Pasello, Giulia
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2024, 203
  • [37] A Comprehensive Review on Radiomics and Deep Learning for Nasopharyngeal Carcinoma Imaging
    Li, Song
    Deng, Yu-Qin
    Zhu, Zhi-Ling
    Hua, Hong-Li
    Tao, Ze-Zhang
    DIAGNOSTICS, 2021, 11 (09)
  • [38] Radiomics-Informed Deep Curriculum Learning for Breast Cancer Diagnosis
    Nebbia, Giacomo
    Dadsetan, Saba
    Arefan, Dooman
    Zuley, Margarita L.
    Sumkin, Jules H.
    Huang, Heng
    Wu, Shandong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V, 2021, 12905 : 634 - 643
  • [39] Predicting Ki-67 expression levels in breast cancer using radiomics-based approaches on digital breast tomosynthesis and ultrasound
    Liu, Jie
    Yan, Caiying
    Liu, Chenlu
    Wang, Yanxiao
    Chen, Qian
    Chen, Ying
    Guo, Jianfeng
    Chen, Shuangqing
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [40] Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography
    Samala, Ravi K.
    Chan, Heang-Ping
    Hadjiiski, Lubomir
    Helvie, Mark A.
    Wei, Jun
    Cha, Kenny
    MEDICAL PHYSICS, 2016, 43 (12) : 6654 - 6666