New non-standard topologies

被引:0
作者
Adel Khalfallah
机构
[1] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
来源
Monatshefte für Mathematik | 2013年 / 172卷
关键词
Non-standard analysis; S-topology; Q-topology; Robinson’s asymptotic numbers; Primary 54J05; 26E35; 03H05; 46S20; Secondary 46S10; 46F10; 12J25; 03C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, on a non-standard extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle ( {}^*X, {}^*d)$$\end{document} of a metric space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle (X,d)$$\end{document}, we construct a chain of new non-standard topologies in terms of convex subrings of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle {}^*\mathbb{R }$$\end{document}, its minimal element is the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle S$$\end{document}-topology and its maximal is the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle Q$$\end{document}-topology. Next, we construct \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \widehat{X}$$\end{document}, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle {\fancyscript{F}}$$\end{document}-asymptotic hull of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle X$$\end{document}, and we prove that such space is metrizable and complete when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle {\fancyscript{F}}$$\end{document} is generated by an asymptotic scale. Finally, we provide a pseudo-valuation taking integral values, equivalent to the classical Robinson’s valuation, on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle {}^\rho \mathbb{R }$$\end{document}, the Robinson’s field of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \rho $$\end{document}-asymptotic numbers.
引用
收藏
页码:323 / 344
页数:21
相关论文
共 15 条
[1]  
Aschenbrenner M.(2005)Asymptotic differential algebra Contemp. Math. 373 49-85
[2]  
Dries L.(1954)An invariant characterization of pseudo-valuations on a field Proc. Cambridge Philos. Soc. 50 159-177
[3]  
Cohn PM(2000)Topology on asymptotic algebras of generalized functions and applications MH. Math. 129 1-14
[4]  
Delcroix A(2009)Topology and functoriality in $$({C},{{E}},{P})$$ -algebras. Application to singular differential problems J. Math. Anal. Appl. 359 394-403
[5]  
Scarpalezos D(2006)Several nonstandard remarks. Representation theory, dynamical systems, and asymptotic combinatorics Am. Math. Soc. Trans. Ser. 2 217 37-49
[6]  
Delcroix A.(1946)On uniform spaces and topological algebra Bull. Am. Math. Soc. 52 936-939
[7]  
Fesenko I(1999)Characterization of Colombeau generalized functions by their pointvalues Math. Nachr. 203 147-157
[8]  
Kalisch GK(1976)On a class of valuation fields introduced by Robinson Israel J. Math. 25 189-201
[9]  
Kunzinger M(1936)Über Pseudobewertungen. I Acta Math. 66 79-119
[10]  
Oberguggenberger M(1991)On a valuation field invented by A. Robinson and certain structures connected with it Israel J. Math. 74 65-79