On the Well-Posedness and Decay Rates of Solutions to the Poisson-Nernst-Planck-Navier-Stokes System

被引:0
作者
Zhai, Xiaoping [1 ]
Wu, Zhigang [2 ]
机构
[1] Guangdong Univ Technol, Dept Math, Guangzhou 510520, Peoples R China
[2] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Poisson-Nernst-Planck-Navier-Stokes; Global existence; Besov spaces; Decay rates; QUASI-NEUTRAL LIMIT; LARGE TIME BEHAVIOR; GLOBAL EXISTENCE; LAYER PROBLEM; ASYMPTOTIC-BEHAVIOR; DIFFUSION MODEL; CRITICAL SPACES; WEAK SOLUTIONS; EQUATIONS; UNIQUENESS;
D O I
10.1007/s00021-024-00867-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem associated to the Poisson-Nernst-Planck-Navier-Stokes system which is first derived by Wang et al. (J Differ Equ 262:68-115, 2017) through an Energetic Variational Approach (EVA). Exploiting harmonic analysis tools (especially Littlewood-Paley theory), we first study the local and global well-posedness of the system in critical Besov spaces. Then, under a suitable condition involving only low-frequency of initial data, we use the Lyapunov-type inequality of the energy functionals to establish optimal time decay rates for the constructed global solutions. The proof crucially depends on a careful analysis for treating the extra effect of the distribution for the negative (positive) charge and non-standard product estimates, interpolation inequalities.
引用
收藏
页数:37
相关论文
共 52 条
  • [1] Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
  • [2] Balbuena P. B., 2004, LITHIUM ION BATTERIE
  • [3] THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS
    BILER, P
    HEBISCH, W
    NADZIEJA, T
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) : 1189 - 1209
  • [4] GLOBAL WELL-POSEDNESS AND STABILITY OF ELECTROKINETIC FLOWS
    Bothe, Dieter
    Fischer, Andre
    Saal, Juergen
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) : 1263 - 1316
  • [5] Cercignani C., 1994, APPL MATH SCI, V106
  • [6] Chemin JY., 2010, J. Differ. Equ, V248, P2130
  • [7] Chen QL, 2010, REV MAT IBEROAM, V26, P915
  • [8] Chen QL, 2010, COMMUN PUR APPL MATH, V63, P1173
  • [9] Global Large Solutions and Incompressible Limit for the Compressible Navier-Stokes Equations
    Chen, Zhi-Min
    Zhai, Xiaoping
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (02)
  • [10] On the Nernst-Planck-Navier-Stokes system
    Constantin, Peter
    Ignatova, Mihaela
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (03) : 1379 - 1428