Weak convergence of the scaled median of independent Brownian motions

被引:0
作者
Jason Swanson
机构
[1] University of Wisconsin-Madison,Mathematics Department
来源
Probability Theory and Related Fields | 2007年 / 138卷
关键词
Brownian motion; Median; Weak convergence; Fractional Brownian motion; Tightness; 60F17; 60G15; 60J65; 60K35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the median of n independent Brownian motions, denoted by Mn(t), and show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}\,M_n$$\end{document} converges weakly to a centered Gaussian process. The chief difficulty is establishing tightness, which is proved through direct estimates on the increments of the median process. An explicit formula is given for the covariance function of the limit process. The limit process is also shown to be Hölder continuous with exponent γ for all γ < 1/4.
引用
收藏
页码:269 / 304
页数:35
相关论文
共 6 条
[1]  
Dürr D.(1985)Asymptotics of particle trajectories in infinite one-dimensional systems with collisions Commun. Pure Appl. Math. 38 575-597
[2]  
Goldstein S.(1965)Diffusions with collisions between particles J. Appl. Probab. 2 323-338
[3]  
Lebowitz J.L.(1968)Uniform motion with elastic collisions of an infinite particle system J. Math. Mech. 18 973-989
[4]  
Harris T.E.(2005)A test problem for molecular dynamics integrators IMA J. Numer. Anal. 25 286-309
[5]  
Spitzer F.(undefined)undefined undefined undefined undefined-undefined
[6]  
Tupper P.F.(undefined)undefined undefined undefined undefined-undefined