On the stability of the equation with a partial boundary value condition

被引:0
作者
Huashui Zhan
机构
[1] Xiamen University of Technology,School of Applied Mathematics
来源
Boundary Value Problems | / 2018卷
关键词
Degenerate parabolic equation; Entropy solution; Kruzkov’s bi-variables method; Stability; 35L65; 35L85; 35R35;
D O I
暂无
中图分类号
学科分类号
摘要
The degenerate parabolic equation with a convection term is considered. Let Ω be a bounded domain with C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{2}$\end{document} smooth boundary and d(x)=dist(x,∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d(x)=\operatorname{dist}(x, \partial\Omega)$\end{document} be the distance function from the boundary. If Δd≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta d\leq0$\end{document} when x is near to the boundary, then the stability of the entropy solutions is proved independent of the boundary value conditions. The degeneracy of the convection term on the boundary can take place of the usual boundary value condition.
引用
收藏
相关论文
共 30 条
[1]  
Vol’pert A.I.(1967)On the problem for quasilinear degenerate parabolic equations of second order Mat. Sb. 3 374-396
[2]  
Hudjaev S.I.(1979)Uniqueness of solutions of the initial value problem for J. Math. Pures Appl. 58 153-163
[3]  
Brezis H.(1970)First order quasilinear equations in several independent variables Math. USSR Sb. 10 217-243
[4]  
Crandall M.G.(1999)Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations J. Differ. Equ. 151 231-251
[5]  
Kružkov S.N.(2003)Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20 645-668
[6]  
Cockburn B.(2004)Reharmonized entropy solutions for quasilinear anisotropic degenerate parabolic equations SIAM J. Math. Anal. 36 405-422
[7]  
Gripenberg G.(1999)Entropy solutions for nonlinear degenerate problems Arch. Ration. Mech. Anal. 147 269-361
[8]  
Chen G.Q.(2012)Homogeneous Dirichlet problems for quasilinear anisotropic degenerate parabolic-hyperbolic equations J. Differ. Equ. 252 4719-4741
[9]  
Perthame B.(1994)A kinetic formation of multidimensional conservation laws and related equations J. Am. Math. Soc. 7 169-191
[10]  
Bendahamane M.(2012)Uniqueness and existence for anisotropic degenerate parabolic equations with boundary conditions on a bounded rectangle J. Differ. Equ. 252 137-167