Uncertainty Principle for Free Metaplectic Transformation

被引:0
|
作者
Zhichao Zhang
机构
[1] Nanjing University of Information Science and Technology,School of Mathematics and Statistics
[2] Nanjing University of Information Science and Technology,Center for Applied Mathematics of Jiangsu Province
[3] Nanjing University of Information Science and Technology,Jiangsu International Joint Laboratory on System Modeling and Data Analysis
来源
Journal of Fourier Analysis and Applications | 2023年 / 29卷
关键词
Uncertainty principle; Free metaplectic transformation (FMT); Trace; Eigenvalue; Positive semidefinite matrix; Symmetric matrix; 15A18; 15A42; 15B48; 42A38; 42B10; 70H15;
D O I
暂无
中图分类号
学科分类号
摘要
This study devotes to Heisenberg’s uncertainty inequalities of complex-valued functions in two free metaplectic transformation (FMT) domains without the assumption of orthogonality. In our latest work (Zhang in J Fourier Anal Appl 27(4):68, 2021), it is crucial that the FMT needs to be orthogonal for a decoupling of the cross terms. Instead of applying the orthogonality assumption, our current work uses the trace inequality for the product of symmetric matrices and positive semidefinite matrices to address the problem of coupling between cross terms. It formulates two types of lower bounds on the uncertainty product of complex-valued functions for two FMTs. The first one relies on the minimum eigenvalues of AjTAj-BjTAj,BjTAj,BjTBj-BjTAj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}_j^{\textrm{T}}\textbf{A}_j-\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{B}_j-\textbf{B}_j^{\textrm{T}}\textbf{A}_j$$\end{document}, while the other one relies on the minimum eigenvalues of AjTAj+BjTAj,BjTBj+BjTAj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}_j^{\textrm{T}}\textbf{A}_j+\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{B}_j+\textbf{B}_j^{\textrm{T}}\textbf{A}_j$$\end{document} and the maximum eigenvalues of BjTAj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{B}_j^{\textrm{T}}\textbf{A}_j$$\end{document}, where Aj,Bj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}_j,\textbf{B}_j$$\end{document}, j=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2$$\end{document} are the blocks found in symplectic matrices. Also, they are all relying on the covariance and absolute covariance. Sufficient conditions that truly give rise to the lower bounds are obtained. The theoretical results are verified by examples and experiments.
引用
收藏
相关论文
共 50 条
  • [31] Gravity from the uncertainty principle
    McCulloch, M. E.
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 349 (02) : 957 - 959
  • [32] Semiclassical localization and uncertainty principle
    Pennini, F.
    Plastino, A.
    Ferri, G. L.
    Olivares, F.
    PHYSICS LETTERS A, 2008, 372 (29) : 4870 - 4873
  • [34] The uncertainty principle and nature of matter
    Klinaku, Shukri
    PHYSICS ESSAYS, 2016, 29 (03) : 301 - 303
  • [35] Semiquantum chaos and the uncertainty principle
    Kowalski, AM
    Martin, MT
    Nuñez, J
    Plastino, A
    Proto, AN
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (1-2) : 95 - 108
  • [36] An uncertainty principle for finite frames
    Lammers, Mark
    Maeser, Anna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) : 242 - 247
  • [37] A chemical uncertainty principle challenge
    Juris Meija
    Analytical and Bioanalytical Chemistry, 2007, 387 : 1583 - 1584
  • [38] Gravity from the uncertainty principle
    M. E. McCulloch
    Astrophysics and Space Science, 2014, 349 : 957 - 959
  • [39] The EPR paradox and the uncertainty principle
    McCulloch, Michael E.
    Gine, Jaume
    MODERN PHYSICS LETTERS B, 2021, 35 (04):
  • [40] Uncertainty principle and kinetic equations
    Alexandre, R.
    Morimoto, Y.
    Ukai, S.
    Xu, C-J.
    Yang, T.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (08) : 2013 - 2066