Uncertainty Principle for Free Metaplectic Transformation

被引:0
|
作者
Zhichao Zhang
机构
[1] Nanjing University of Information Science and Technology,School of Mathematics and Statistics
[2] Nanjing University of Information Science and Technology,Center for Applied Mathematics of Jiangsu Province
[3] Nanjing University of Information Science and Technology,Jiangsu International Joint Laboratory on System Modeling and Data Analysis
来源
Journal of Fourier Analysis and Applications | 2023年 / 29卷
关键词
Uncertainty principle; Free metaplectic transformation (FMT); Trace; Eigenvalue; Positive semidefinite matrix; Symmetric matrix; 15A18; 15A42; 15B48; 42A38; 42B10; 70H15;
D O I
暂无
中图分类号
学科分类号
摘要
This study devotes to Heisenberg’s uncertainty inequalities of complex-valued functions in two free metaplectic transformation (FMT) domains without the assumption of orthogonality. In our latest work (Zhang in J Fourier Anal Appl 27(4):68, 2021), it is crucial that the FMT needs to be orthogonal for a decoupling of the cross terms. Instead of applying the orthogonality assumption, our current work uses the trace inequality for the product of symmetric matrices and positive semidefinite matrices to address the problem of coupling between cross terms. It formulates two types of lower bounds on the uncertainty product of complex-valued functions for two FMTs. The first one relies on the minimum eigenvalues of AjTAj-BjTAj,BjTAj,BjTBj-BjTAj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}_j^{\textrm{T}}\textbf{A}_j-\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{B}_j-\textbf{B}_j^{\textrm{T}}\textbf{A}_j$$\end{document}, while the other one relies on the minimum eigenvalues of AjTAj+BjTAj,BjTBj+BjTAj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}_j^{\textrm{T}}\textbf{A}_j+\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{B}_j+\textbf{B}_j^{\textrm{T}}\textbf{A}_j$$\end{document} and the maximum eigenvalues of BjTAj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{B}_j^{\textrm{T}}\textbf{A}_j$$\end{document}, where Aj,Bj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}_j,\textbf{B}_j$$\end{document}, j=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2$$\end{document} are the blocks found in symplectic matrices. Also, they are all relying on the covariance and absolute covariance. Sufficient conditions that truly give rise to the lower bounds are obtained. The theoretical results are verified by examples and experiments.
引用
收藏
相关论文
共 50 条
  • [21] On Erb's uncertainty principle
    Klaja, Hubert
    STUDIA MATHEMATICA, 2016, 232 (01) : 7 - 17
  • [22] Quantum imaging and the uncertainty principle
    D'Angelo, M
    Shih, Y
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING, 2004, 5161 : 171 - 185
  • [23] The uncertainty principle: A mathematical survey
    Folland, GB
    Sitaram, A
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) : 207 - 238
  • [24] A Quantum Wavelet Uncertainty Principle
    Arfaoui, Sabrine
    Alshehri, Maryam G.
    Ben Mabrouk, Anouar
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [25] THE UNCERTAINTY PRINCIPLE AS AN EVOLUTIONARY ENGINE
    MATSUNO, K
    BIOSYSTEMS, 1992, 27 (02) : 63 - 76
  • [26] A chemical uncertainty principle challenge
    Meija, Juris
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 387 (05) : 1583 - 1584
  • [27] Uncertainty principle in larmor clock
    乔川
    任中洲
    中国物理C, 2011, 35 (11) : 992 - 996
  • [28] The uncertainty principle: A mathematical survey
    Gerald B. Folland
    Alladi Sitaram
    Journal of Fourier Analysis and Applications, 1997, 3 : 207 - 238
  • [29] Heisenberg's uncertainty principle
    Busch, Paul
    Heinonen, Teiko
    Lahti, Pekka
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 452 (06): : 155 - 176
  • [30] An uncertainty principle for function fields
    Thorne, Frank
    JOURNAL OF NUMBER THEORY, 2011, 131 (08) : 1363 - 1389