Local attractors of one of the original versions of the Kuramoto–Sivashinsky equation

被引:0
作者
A. N. Kulikov
D. A. Kulikov
机构
[1] Demidov Yaroslavl State University,
来源
Theoretical and Mathematical Physics | 2023年 / 215卷
关键词
Kuramoto–Sivashinsky equation; boundary-value problem; stability; bifurcation; invariant manifold; normal form;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:751 / 768
页数:17
相关论文
共 50 条
[41]   Second-Kind Equilibrium States of the Kuramoto–Sivashinsky Equation with Homogeneous Neumann Boundary Conditions [J].
Sekatskaya A.V. .
Journal of Mathematical Sciences, 2022, 262 (6) :844-854
[42]   Model predictive control of Kuramoto-Sivashinsky equation with state and input constraints [J].
Dubljevic, Stevan .
CHEMICAL ENGINEERING SCIENCE, 2010, 65 (15) :4388-4396
[43]   Global Existence and Analyticity for the 2D Kuramoto-Sivashinsky Equation [J].
Ambrose, David M. ;
Mazzucato, Anna L. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) :1525-1547
[44]   On the Classical Solutions for the Kuramoto-Sivashinsky Equation with Ehrilch-Schwoebel Effects [J].
Coclite, Giuseppe Maria ;
Di Ruvo, Lorenzo .
CONTEMPORARY MATHEMATICS, 2022, 3 (04) :386-431
[45]   Boundary Control of the Kuramoto-Sivashinsky Equation Under Intermittent Data Availability [J].
Maghenem, M. ;
Prieur, C. ;
Witrant, E. .
2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, :2227-2232
[46]   Adaptive boundary control of the Kuramoto-Sivashinsky equation under intermittent sensing [J].
Belhadjoudja, Mohamed Camil ;
Maghenem, Mohamed Adlene ;
Witrant, Emmanuel ;
Prieur, Christophe .
AUTOMATICA, 2025, 178
[47]   Global existence for the two-dimensional Kuramoto-Sivashinsky equation with advection [J].
Feng, Yuanyuan ;
Mazzucato, Anna L. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (02) :279-306
[48]   The Kuramoto-Sivashinsky equation revisited: Low-dimensional corresponding systems [J].
Khellat, Farhad ;
Vasegh, Nastaran .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :3011-3022
[49]   Analytical solution for the generalized Kuramoto-Sivashinsky equation by the differential transform method [J].
Hesam, S. ;
Nazemi, A. R. ;
Haghbin, A. .
SCIENTIA IRANICA, 2013, 20 (06) :1805-1811
[50]   Boundary model predictive control of Kuramoto-Sivashinsky equation with input and state constraints [J].
Dubljevic, Stevan .
COMPUTERS & CHEMICAL ENGINEERING, 2010, 34 (10) :1655-1661