Global smooth solutions to the nonisothermal compressible fluid models of Korteweg type with large initial data

被引:0
作者
Zhengzheng Chen
Lin He
Huijiang Zhao
机构
[1] Anhui University,School of Mathematical Sciences
[2] Wuhan University,School of Mathematics and Statistics
[3] Wuhan University,Computational Science Hubei Key Laboratory
来源
Zeitschrift für angewandte Mathematik und Physik | 2017年 / 68卷
关键词
Navier–Stokes–Korteweg system; Density- and/or temperature-dependent viscosity; Capillarity and heat conductivity coefficients; Global solutions; Large initial data; 35Q35; 35L65; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the construction of global smooth large-amplitude solutions to the Cauchy problem of the one-dimensional nonisothermal compressible fluid models of Korteweg type with density- and/or temperature-dependent viscosity, capillarity, and heat conductivity coefficients. Two types of global solvability results are obtained if the viscosity, capillarity, and heat conductivity coefficients satisfy some conditions, and the key point in our analysis is to deduce the positive lower and upper bounds on the density and the temperature.
引用
收藏
相关论文
共 76 条
  • [1] Bresch D(2003)On some compressible fluid models: Korteweg, lubrication and shallow water systems Commun. Partial Differ. Equ. 28 843-868
  • [2] Desjardins B(2014)Existence of global strong solution and vanishing capillarity–viscosity limit in one dimension for the Korteweg system SIAM J. Math. Anal. 45 469-494
  • [3] Lin C-K(2012)Asymptotic stability of strong rarefaction waves for the compressible fluid models of Korteweg type J. Math. Anal. Appl. 394 438-448
  • [4] Charve F(2013)Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type Math. Meth. Appl. Sci. 36 2265-2279
  • [5] Haspot B(2014)Existence and nonlinear stability of stationary solutions to the full compressible Navier–Stokes–Korteweg system J. Math. Pures Appl. 101 330-371
  • [6] Chen Z-Z(2015)Nonlinear stability of traveling wave solutions for the compressible fluid models of Korteweg type J. Math. Anal. Appl. 422 1213-1234
  • [7] Chen Z-Z(2015)Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data J. Differ. Equ. 259 4376-4411
  • [8] Xiao Q-H(1982)Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity SIAM J. Math. Anal. 13 397-408
  • [9] Chen Z-Z(2001)Existence of solutions for compressible fluid models of Korteweg type Ann. Inst. Henri Poincaré Anal. Non linéaire 18 97-133
  • [10] Zhao H-J(1985)On the thermodynamics of interstitial working Arch. Rational Mech. Anal. 88 95-133