Edge lifting and total domination in graphs

被引:0
|
作者
Wyatt J. Desormeaux
Teresa W. Haynes
Michael A. Henning
机构
[1] University of Johannesburg,Department of Mathematics
[2] East Tennessee State University,Department of Mathematics and Statistics
来源
Journal of Combinatorial Optimization | 2013年 / 25卷
关键词
Edge lifting; Edge splitting; Total domination;
D O I
暂无
中图分类号
学科分类号
摘要
Let u and v be vertices of a graph G, such that the distance between u and v is two and x is a common neighbor of u and v. We define the edge lift of uv off x as the process of removing edges ux and vx while adding the edge uv to G. In this paper, we investigate the effect that edge lifting has on the total domination number of a graph. Among other results, we show that there are no trees for which every possible edge lift decreases the total domination number and that there are no trees for which every possible edge lift leaves the total domination number unchanged. Trees for which every possible edge lift increases the total domination number are characterized.
引用
收藏
页码:47 / 59
页数:12
相关论文
共 50 条
  • [1] Edge lifting and total domination in graphs
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (01) : 47 - 59
  • [2] Edge lifting and Roman domination in graphs
    Meraimi, Hicham
    Chellali, Mustapha
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
  • [3] Properties of total domination edge-critical graphs
    Henning, Michael A.
    van der Merwe, Lucas C.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (02) : 147 - 153
  • [4] The maximum diameter of total domination edge-critical graphs
    Henning, Michael A.
    van der Merwe, Lucas C.
    DISCRETE MATHEMATICS, 2012, 312 (02) : 397 - 404
  • [5] On α-total domination in graphs
    Henning, Michael A.
    Rad, Nader Jafari
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1143 - 1151
  • [6] An extremal problem for total domination stable graphs upon edge removal
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (10) : 1048 - 1052
  • [7] ON THE TOTAL DOMINATION NUMBEROF TOTAL GRAPHS
    Cabrera-Martinez, Abel
    Sanchez, Jose L.
    Sigarreta Almira, Jose M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 933 - 951
  • [8] Domination and Total Domination Contraction Numbers of Graphs
    Huang, Jia
    Xu, Jun-Ming
    ARS COMBINATORIA, 2010, 94 : 431 - 443
  • [9] Total Roman domination and total domination in unit disk graphs
    Rout, Sasmita
    Mishra, Pawan Kumar
    Das, Gautam Kumar
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [10] NEIGHBOURHOOD TOTAL DOMINATION IN GRAPHS
    Arumugam, S.
    Sivagnanam, C.
    OPUSCULA MATHEMATICA, 2011, 31 (04) : 519 - 531