The odd Littlewood–Richardson rule

被引:0
作者
Alexander P. Ellis
机构
[1] Columbia University,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2013年 / 37卷
关键词
Symmetric functions; Hopf algebras; Supalgebra; Odd symmetric functions; Hives; Littlewood–Richardson; Schubert calculus;
D O I
暂无
中图分类号
学科分类号
摘要
In previous work with Mikhail Khovanov and Aaron Lauda we introduced two odd analogues of the Schur functions: one via the combinatorics of Young tableaux (odd Kostka numbers) and one via an odd symmetrization operator. In this paper we introduce a third analogue, the plactic Schur functions. We show they coincide with both previously defined types of Schur function, confirming a conjecture. Using the plactic definition, we establish an odd Littlewood–Richardson rule. We also re-cast this rule in the language of polytopes, via the Knutson–Tao hive model.
引用
收藏
页码:777 / 799
页数:22
相关论文
共 17 条
[1]  
Buch A.(2000)The saturation conjecture (after A. Knutson and T. Tao) Enseign. Math., IIe Série 46 43-60
[2]  
Berenstein A.(1992)Triple multiplicities for J. Algebr. Comb. 1 7-22
[3]  
Zelevinsky A.(2012)( Adv. Math. 231 965-999
[4]  
Ellis A.P.(2010)+1) and the spectrum of the exterior algebra of the adjoint representation Eur. J. Comb. 31 210-229
[5]  
Khovanov M.(1998)The Hopf algebra of odd symmetric functions Sel. Math. New Ser. 4 419-445
[6]  
Kim J.S.(1999)Skew domino Schensted algorithm and sign-imbalance J. Am. Math. Soc. 12 1055-1090
[7]  
Klyachko A.(2008)Stable bundles, representation theory and Hermitian operators Transform. Groups 13 389-412
[8]  
Knutson A.(2004)The honeycomb model of J. Comb. Theory, Ser. A 107 87-115
[9]  
Tao T.(2005)(ℂ) tensor products I: proof of the saturation conjecture Eur. J. Comb. 26 995-1008
[10]  
Khongsap T.(2004)Hecke-Clifford algebras and spin Hecke algebras I: The classical affine type Ann. Comb. 8 103-112