Multi-omic data integration enables discovery of hidden biological regularities

被引:0
|
作者
Ali Ebrahim
Elizabeth Brunk
Justin Tan
Edward J. O'Brien
Donghyuk Kim
Richard Szubin
Joshua A. Lerman
Anna Lechner
Anand Sastry
Aarash Bordbar
Adam M. Feist
Bernhard O. Palsson
机构
[1] University of California,Department of Bioengineering
[2] San Diego,Department of Chemical and Biomolecular Engineering
[3] 9500 Gilman Drive,Department of Pediatrics
[4] Mail Code 0412,undefined
[5] La Jolla,undefined
[6] California 92093,undefined
[7] USA,undefined
[8] The Novo Nordisk Foundation Center for Biosustainability,undefined
[9] Technical University of Denmark,undefined
[10] Bioinformatics and Systems Biology Program,undefined
[11] University of California,undefined
[12] University of California,undefined
[13] University of California,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Rapid growth in size and complexity of biological data sets has led to the ‘Big Data to Knowledge’ challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome-scale models, based on genomic and bibliomic data, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can be formally represented in a computable format allowing for coherent interpretation and prediction of fitness and selection that underlies cellular physiology.
引用
收藏
相关论文
共 50 条
  • [31] PyLiger: scalable single-cell multi-omic data integration in Python']Python
    Lu, Lu
    Welch, Joshua D.
    BIOINFORMATICS, 2022, 38 (10) : 2946 - 2948
  • [32] A multi-omic screening approach for the discovery of thermoactive glycoside hydrolases
    Busch, Philip
    Suleiman, Marcel
    Schaefers, Christian
    Antranikian, Garabed
    EXTREMOPHILES, 2021, 25 (02) : 101 - 114
  • [33] A multi-omic screening approach for the discovery of thermoactive glycoside hydrolases
    Philip Busch
    Marcel Suleiman
    Christian Schäfers
    Garabed Antranikian
    Extremophiles, 2021, 25 : 101 - 114
  • [34] Advancing discovery in hearing research via biologist-friendly access to multi-omic data
    Ronna Hertzano
    Anup Mahurkar
    Human Genetics, 2022, 141 : 319 - 322
  • [35] Advancing discovery in hearing research via biologist-friendly access to multi-omic data
    Hertzano, Ronna
    Mahurkar, Anup
    HUMAN GENETICS, 2022, 141 (3-4) : 319 - 322
  • [36] OMICtools: an informative directory for multi-omic data analysis
    Henry, Vincent J.
    Bandrowski, Anita E.
    Pepin, Anne-Sophie
    Gonzalez, Bruno J.
    Desfeux, Arnaud
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2014,
  • [37] Uncovering the gene regulatory network of type 2 diabetes through multi-omic data integration
    Liu, Jiachen
    Liu, Shenghua
    Yu, Zhaomei
    Qiu, Xiaorui
    Jiang, Rundong
    Li, Weizheng
    JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
  • [38] Uncovering the gene regulatory network of type 2 diabetes through multi-omic data integration
    Jiachen Liu
    Shenghua Liu
    Zhaomei Yu
    Xiaorui Qiu
    Rundong Jiang
    Weizheng Li
    Journal of Translational Medicine, 20
  • [39] Multi-omic integration of DNA methylation and gene expression data reveals molecular vulnerabilities in glioblastoma
    Santamarina-Ojeda, Pablo
    Tejedor, Juan Ramon
    Perez, Raul F.
    Lopez, Virginia
    Roberti, Annalisa
    Mangas, Cristina
    Fernandez, Agustin F.
    Fraga, Mario F. F.
    MOLECULAR ONCOLOGY, 2023, 17 (09) : 1726 - 1743
  • [40] Multiplex methods provide effective integration of multi-omic data in genome-scale models
    Angione, Claudio
    Conway, Max
    Lio, Pietro
    BMC BIOINFORMATICS, 2016, 17