Multi-omic data integration enables discovery of hidden biological regularities

被引:0
|
作者
Ali Ebrahim
Elizabeth Brunk
Justin Tan
Edward J. O'Brien
Donghyuk Kim
Richard Szubin
Joshua A. Lerman
Anna Lechner
Anand Sastry
Aarash Bordbar
Adam M. Feist
Bernhard O. Palsson
机构
[1] University of California,Department of Bioengineering
[2] San Diego,Department of Chemical and Biomolecular Engineering
[3] 9500 Gilman Drive,Department of Pediatrics
[4] Mail Code 0412,undefined
[5] La Jolla,undefined
[6] California 92093,undefined
[7] USA,undefined
[8] The Novo Nordisk Foundation Center for Biosustainability,undefined
[9] Technical University of Denmark,undefined
[10] Bioinformatics and Systems Biology Program,undefined
[11] University of California,undefined
[12] University of California,undefined
[13] University of California,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Rapid growth in size and complexity of biological data sets has led to the ‘Big Data to Knowledge’ challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome-scale models, based on genomic and bibliomic data, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can be formally represented in a computable format allowing for coherent interpretation and prediction of fitness and selection that underlies cellular physiology.
引用
收藏
相关论文
共 50 条
  • [21] Characterizing Multi-omic Data in Systems Biology
    Mason, Christopher E.
    Porter, Sandra G.
    Smith, Todd M.
    SYSTEMS ANALYSIS OF HUMAN MULTIGENE DISORDERS, 2014, 799 : 15 - 38
  • [22] Multi-omic data analysis using Galaxy
    Boekel, Jorrit
    Chilton, John M.
    Cooke, Ira R.
    Horvatovich, Peter L.
    Jagtap, Pratik D.
    Kall, Lukas
    Lehtio, Janne
    Lukasse, Pieter
    Moerland, Perry D.
    Griffin, Timothy J.
    NATURE BIOTECHNOLOGY, 2015, 33 (02) : 137 - 139
  • [23] The challenges of integrating multi-omic data sets
    Palsson, Bernhard
    Zengler, Karsten
    NATURE CHEMICAL BIOLOGY, 2010, 6 (11) : 787 - 789
  • [24] EMPress Enables Tree-Guided, Interactive, and Exploratory Analyses of Multi-omic Data Sets
    Cantrell, Kalen
    Fedarko, Marcus W.
    Rahman, Gibraan
    McDonald, Daniel
    Yang, Yimeng
    Zaw, Thant
    Gonzalez, Antonio
    Janssen, Stefan
    Estaki, Mehrbod
    Haiminen, Niina
    Beck, Kristen L.
    Zhu, Qiyun
    Sayyari, Erfan
    Morton, James T.
    Armstrong, George
    Tripathi, Anupriya
    Gauglitz, Julia M.
    Marotz, Clarisse
    Matteson, Nathaniel L.
    Martino, Cameron
    Sanders, Jon G.
    Carrieri, Anna Paola
    Song, Se Jin
    Swafford, Austin D.
    Dorrestein, Pieter C.
    Andersen, Kristian G.
    Parida, Laxmi
    Kim, Ho-Cheol
    Vazquez-Baeza, Yoshiki
    Knight, Rob
    MSYSTEMS, 2021, 6 (02)
  • [25] CanDIG: Federated network across Canada for multi-omic and health data discovery and analysis
    Dursi, L. Jonathan
    Bozoky, Zoltan
    de Borja, Richard
    Li, Haoyuan
    Bujold, David
    Lipski, Adam
    Rashid, Shaikh Farhan
    Sethi, Amanjeev
    Memon, Neelam
    Naidoo, Dashaylan
    Coral-Sasso, Felipe
    Wong, Matthew
    Quirion, P-O
    Lu, Zhibin
    Agarwal, Samarth
    Pavlov, Yuriy
    Ponomarev, Andrew
    Husic, Mia
    Pace, Krista
    Palmer, Samantha
    Grover, Stephanie A.
    Hakgor, Sevan
    Siu, Lillian L.
    Malkin, David
    Virtanen, Carl
    Pugh, Trevor J.
    Jacques, Pierre-Etienne
    Joly, Yann
    Jones, Steven J. M.
    Bourque, Guillaume
    Brudno, Michael
    CELL GENOMICS, 2021, 1 (02):
  • [26] Multi-omic data analysis using Galaxy
    Jorrit Boekel
    John M Chilton
    Ira R Cooke
    Peter L Horvatovich
    Pratik D Jagtap
    Lukas Käll
    Janne Lehtiö
    Pieter Lukasse
    Perry D Moerland
    Timothy J Griffin
    Nature Biotechnology, 2015, 33 : 137 - 139
  • [27] The challenges of integrating multi-omic data sets
    Bernhard Palsson
    Karsten Zengler
    Nature Chemical Biology, 2010, 6 : 787 - 789
  • [28] Integration of multi-omic data identifies psoriasis endotypes correlating with clinical and immunological phenotypes
    Cameron, M.
    Golden, J.
    Richardson, B.
    Damiani, G.
    Ali, M.
    Young, A.
    Nichols, C.
    Ward, N.
    McCormick, T.
    Cooper, K.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (09) : S230 - S230
  • [29] Multi-Omic Data Integration Suggests Putative Microbial Drivers of Aetiopathogenesis in Mycosis Fungoides
    Licht, Philipp
    Mailaender, Volker
    CANCERS, 2024, 16 (23)
  • [30] A novel multivariate curve resolution based strategy for multi-omic integration of toxicological data
    Menendez-Pedriza, Albert
    Navarro-Martin, Laia
    Jaumot, Joaquim
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2023, 242