Multi-omic data integration enables discovery of hidden biological regularities

被引:0
|
作者
Ali Ebrahim
Elizabeth Brunk
Justin Tan
Edward J. O'Brien
Donghyuk Kim
Richard Szubin
Joshua A. Lerman
Anna Lechner
Anand Sastry
Aarash Bordbar
Adam M. Feist
Bernhard O. Palsson
机构
[1] University of California,Department of Bioengineering
[2] San Diego,Department of Chemical and Biomolecular Engineering
[3] 9500 Gilman Drive,Department of Pediatrics
[4] Mail Code 0412,undefined
[5] La Jolla,undefined
[6] California 92093,undefined
[7] USA,undefined
[8] The Novo Nordisk Foundation Center for Biosustainability,undefined
[9] Technical University of Denmark,undefined
[10] Bioinformatics and Systems Biology Program,undefined
[11] University of California,undefined
[12] University of California,undefined
[13] University of California,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Rapid growth in size and complexity of biological data sets has led to the ‘Big Data to Knowledge’ challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome-scale models, based on genomic and bibliomic data, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can be formally represented in a computable format allowing for coherent interpretation and prediction of fitness and selection that underlies cellular physiology.
引用
收藏
相关论文
共 50 条
  • [1] Multi-omic data integration enables discovery of hidden biological regularities
    Ebrahim, Ali
    Brunk, Elizabeth
    Tan, Justin
    O'Brien, Edward J.
    Kim, Donghyuk
    Szubin, Richard
    Lerman, Joshua A.
    Lechner, Anna
    Sastry, Anand
    Bordbar, Aarash
    Feist, Adam M.
    Palsson, Bernhard O.
    NATURE COMMUNICATIONS, 2016, 7
  • [2] Editorial: Multi-omic data integration
    Nardini, Christine
    Dent, Jennifer
    Tieri, Paolo
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2015, 3
  • [3] MOTA: Network-Based Multi-Omic Data Integration for Biomarker Discovery
    Fan, Ziling
    Zhou, Yuan
    Ressom, Habtom W.
    METABOLITES, 2020, 10 (04)
  • [4] A new approach for multi-omic data integration
    Zuo, Yiming
    Yu, Guoqiang
    Zhang, Chi
    Ressom, Habtom W.
    2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2014,
  • [5] Editorial: Multi-omic Data Integration in Oncology
    Finotello, Francesca
    Calura, Enrica
    Risso, Davide
    Hautaniemi, Sampsa
    Romualdi, Chiara
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [6] Multi-omic data integration in food science and analysis
    Herraiz-Gil, Sara
    del Carmen de Arriba, Maria
    Escamez, Maria J.
    Leon, Carlos
    CURRENT OPINION IN FOOD SCIENCE, 2023, 52
  • [7] Methods for multi-omic data integration in cancer research
    Hernandez-Lemus, Enrique
    Ochoa, Soledad
    FRONTIERS IN GENETICS, 2024, 15
  • [8] MONET: Multi-omic module discovery by omic selection
    Rappoport, Nimrod
    Safra, Roy
    Shamir, Ron
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
  • [9] Multi-omic approaches for host-microbiome data integration
    Chetty, Ashwin
    Blekhman, Ran
    GUT MICROBES, 2024, 16 (01)
  • [10] NEMO: cancer subtyping by integration of partial multi-omic data
    Rappoport, Nimrod
    Shamir, Ron
    BIOINFORMATICS, 2019, 35 (18) : 3348 - 3356