A systematic evaluation of single-cell RNA-sequencing imputation methods

被引:0
作者
Wenpin Hou
Zhicheng Ji
Hongkai Ji
Stephanie C. Hicks
机构
[1] Department of Biostatistics,
[2] Johns Hopkins Bloomberg School of Public Health,undefined
来源
Genome Biology | / 21卷
关键词
Gene expression; Single-cell RNA-sequencing; Imputation; Benchmark;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 445 条
[1]  
Yanai I(2019)Cel-seq2-single-cell RNA sequencing by multiplexed linear amplification Methods Mol Biol 1979 45-56
[2]  
Hashimshony T(2015)Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets Cell 161 1202-14
[3]  
Macosko EZ(2017)Massively parallel digital transcriptional profiling of single cells Nat Commun 8 14049-81
[4]  
Basu A(2014)Full-length RNA-seq from single cells using smart-seq2 Nat Protoc 9 171-7
[5]  
Satija R(2013)Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments Bioinformatics 29 461-78
[6]  
Nemesh J(2018)Missing data and technical variability in single-cell RNA-sequencing experiments Biostatistics 19 562-2
[7]  
Shekhar K(2014)Bayesian approach to single-cell differential expression analysis Nat Methods 11 740-72
[8]  
Goldman M(2018)Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq Nat Commun 9 3588-89
[9]  
Tirosh I(2020)Eleven grand challenges in single-cell data science Genome Biol 21 31-87
[10]  
Bialas AR(2017)Science forum: the human cell atlas Elife 6 27041-81