Bézier variant of summation-integral type operators

被引:0
|
作者
Naokant Neha
Ram Deo
机构
[1] Delhi Technological University,Department of Applied Mathematics
[2] University of Delhi,Department of Mathematics, Miranda House
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2023年 / 72卷
关键词
Inverse Pólya-Eggenberger distribution; Rate of convergence; Modulus of continuity; Bounded variation; 41A25; 41A35;
D O I
暂无
中图分类号
学科分类号
摘要
The motive of this article is to introduce the Bézier variant of a sequence of summation-integral type operators involving inverse Pólya-Eggenberger distribution and Păltănea operators [17]. For these operators, we estimate the approximation behaviour including first and second-order modulus of smoothness. Lastly, we establish the rate of convergence with a class of functions of derivatives of bounded variation.
引用
收藏
页码:889 / 900
页数:11
相关论文
共 50 条
  • [41] Some approximation properties of generalized integral type operators
    Kumar, Alok
    Vandana
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (01) : 99 - 116
  • [42] On Chlodowsky variant of Szasz operators by Brenke type polynomials
    Mursaleen, M.
    Ansari, Khursheed J.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 991 - 1003
  • [43] On Chlodowsky Variant of Baskakov Type Operators
    ?i?dem Atakut
    Ibrahim Büyükyaz?c?
    AnalysisinTheoryandApplications, 2018, 34 (04) : 323 - 335
  • [44] On the iterates of a class of summation-type linear positive operators
    Agratini, Octavian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (06) : 1178 - 1180
  • [45] Bezier variant of Bernstein-Durrmeyer blending-type operators
    Prakash, Chandra
    Deo, Naokant
    Verma, D. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (06)
  • [46] The Bezier variant of a new type λ-Bernstein operators
    Lian, Bo-yong
    Cai, Qing-bo
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 605 - 609
  • [47] Approximation by generalized Stancu type integral operators involving Sheffer polynomials
    Mursaleen, M.
    Rahman, Shagufta
    Ansari, Khursheed J.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (02) : 215 - 228
  • [48] Integral operators of Urysohn-Stieltjes type
    Banaś J.
    O'Regan D.
    Periodica Mathematica Hungarica, 2005, 51 (2) : 1 - 14
  • [49] Bezier variant of the Bernstein–Durrmeyer type operators
    Tuncer Acar
    P. N. Agrawal
    Trapti Neer
    Results in Mathematics, 2017, 72 : 1341 - 1358
  • [50] On integral type generalizations of positive linear operators
    Duman, O.
    Oezarslan, M. A.
    Dogru, O.
    STUDIA MATHEMATICA, 2006, 174 (01) : 1 - 12