共 50 条
- [41] (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{(2+1)}$$\end{document}-Dimensional nonlinear Rossby solitary waves under the effects of generalized beta and slowly varying topography Nonlinear Dynamics, 2017, 90 (2) : 815 - 822
- [42] Non-local symmetry, interaction solutions and conservation lawsof the (1+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+1)$$\end{document}-dimensional Wu–Zhang equation Pramana, 2021, 95 (3)
- [43] Lie point symmetries, conservation laws and exact solutions of (1+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+ n$$\end{document})-dimensional modified Zakharov–Kuznetsov equation describing the waves in plasma physics Pramana, 2018, 91 (4)
- [44] Unconditional L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-convergence of two compact conservative finite difference schemes for the nonlinear Schrödinger equation in multi-dimensions Calcolo, 2018, 55 (3)
- [45] Time–space fractional (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(2+1)$\end{document} dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions Advances in Difference Equations, 2018 (1)
- [46] Review of AdS/CFT Integrability, Chapter IV.3: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}=6}$$\end{document} Chern–Simons and Strings on AdS4 × CP3 Letters in Mathematical Physics, 2012, 99 (1-3) : 401 - 423
- [47] The (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + 1)$$\end{document}-dimensional generalized time-fractional Zakharov Kuznetsov Benjamin Bona Mahony equation: its classical and nonclassical symmetries, exact solutions, and conservation laws Optical and Quantum Electronics, 2023, 55 (12)
- [48] Multiple types of exact solutions and conservation laws of new coupled (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional Zakharov–Kuznetsov system with time-dependent coefficients Pramana, 2019, 93 (4)
- [49] Invariance properties, conservation laws, and soliton solutions of the time-fractional (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional new coupled ZK system in magnetized dusty plasmas Computational and Applied Mathematics, 2018, 37 (5) : 5981 - 6004
- [50] Symmetry analysis, optimal subalgebra, quasi-self-adjointness condition with conservation laws and analytical solutions for the (1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document})-dimensional Pochhammer–Chree model in longitudinal wave propagation Pramana, 98 (1)