Subgroups, Automorphisms, and Lie Algebras Related to the Basis-Conjugating Automorphism Group

被引:0
作者
V. G. Bardakov
M. V. Neshchadim
机构
[1] Sobolev Institute of Mathematics,Laboratory of Quantum Topology
[2] Novosibirsk State University,undefined
[3] Novosibirsk State Agrarian University,undefined
[4] Chelyabinsk State University,undefined
来源
Algebra and Logic | 2017年 / 55卷
关键词
free group; automorphism group; Lie algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We study some subgroups of the automorphism group of a free group, their factorizations into a semidirect product, automorphism groups, and adjoint Lie algebras.
引用
收藏
页码:436 / 460
页数:24
相关论文
共 20 条
[1]  
Krstic S(1997)The non-finite presentability of IA( Inv. Math. 129 595-606
[2]  
McCool J(1969)) and Acta Math. 123 1-12
[3]  
Chein O(1986)Subgroups of IA automorphisms of a free group Can. J. Math. 38 1525-1529
[4]  
McCool J(1980)On basis-conjugating automorphisms of free groups J. Alg. 63 494-498
[5]  
Lubotzky A(1980)Normal automorphisms of free groups J. Algebra 64 52-53
[6]  
Lue AS-T(2016)Normal automorphisms of free groups Comm. Alg. 44 1350-1378
[7]  
Bardakov VG(2004)On the pure virtual braid group Fund. Math. 181 1-18
[8]  
Mikhailov R(1996)The virtual and universal braids Mat. Zametki 60 92-108
[9]  
Vershinin VV(1945)The conjugating automorphism group of a free group Trudy Mat. Inst. Akad. Nauk SSSR 16 1-54
[10]  
Wu J(1985)Fundamentals of algebraic theory of braid groups Inv. Math. 82 57-75