Contact points of convex bodies

被引:0
作者
M. Rudelson
机构
[1] The Hebrew University of Jerusalem,Institute of Mathematics
来源
Israel Journal of Mathematics | 1997年 / 101卷
关键词
Banach Space; Contact Point; Unit Ball; Orthogonal Projection; Convex Body;
D O I
暂无
中图分类号
学科分类号
摘要
LetB be a convex body in ℝn and let ɛ be an ellipsoid of minimal volume containingB. By contact points ofB we mean the points of the intersection between the boundaries ofB and ɛ. By a result of P. Gruber, a generic convex body in ℝn has (n+3)·n/2 contact points. We prove that for every ɛ>0 and for every convex bodyB ⊂ ℝn there exists a convex bodyK having\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$m \leqslant C(\varepsilon ) \cdot n\log ^3 n$$ \end{document} contact points whose Banach-Mazur distance toB is less than 1+ɛ.
引用
收藏
页码:93 / 124
页数:31
相关论文
共 50 条
[21]   Approximation of Convex Bodies by Centrally Symmetric Bodies [J].
Marek Lassak .
Geometriae Dedicata, 1998, 72 :63-68
[22]   Approximation of convex bodies by centrally symmetric bodies [J].
Lassak, M .
GEOMETRIAE DEDICATA, 1998, 72 (01) :63-68
[23]   Approximation of convex bodies by axially symmetric bodies [J].
Lassak, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (10) :3075-3084
[24]   Geometry of families of random projections of symmetric convex bodies [J].
P. Mankiewicz ;
N. Tomczak-Jaegermann .
Geometric & Functional Analysis GAFA, 2001, 11 :1282-1326
[25]   Analogs of the Markov and Schaeffer–Duffin inequalities for convex bodies [J].
V. I. Skalyga .
Mathematical Notes, 2000, 68 (1)
[26]   On the total perimeter of homothetic convex bodies in a convex container [J].
Dumitrescu A. ;
Tóth C.D. .
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (2) :515-532
[27]   GAUSSIAN PROCESSES AND CONVEX BODIES [J].
Vitale, R. A. .
ECS10: THE10TH EUROPEAN CONGRESS OF STEREOLOGY AND IMAGE ANALYSIS, 2009, :89-93
[28]   Approximation of Convex Bodies by ConvexBodies [J].
国起 ;
StenKaijser .
Northeastern Mathematical Journal, 2003, (04) :323-332
[29]   The blocking numbers of convex bodies [J].
Dalla, L ;
Larman, DG ;
Mani-Levitska, P ;
Zong, C .
DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (2-3) :267-277
[30]   On convex bodies of constant width [J].
Bazylevych, L. E. ;
Zarichnyi, M. M. .
TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (11) :1699-1704