Sturm-liouville operators with singular potentials

被引:0
作者
A. M. Savchuk
A. A. Shkalikov
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 1999年 / 66卷
关键词
Sturm-Liouville operator; distributions; self-adjoint extension; asymptotics of spectra; singular potential; α-function;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with Sturm-Liouville operators generated on a finite interval and on the whole axis by the differential expressionl(y)=−y"+q(x)y, whereq(x) is a distribution of first order, such that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\smallint q(\varepsilon )d\varepsilon \in L_{{\text{2,loc}}} $$ \end{document}. The minimal and maximal operators corresponding to potentials of this type on a finite interval are constructed. All self-adjoint extensions of the minimal operator are described and the asymptotics of the eigenvalues of these extensions is found. It is proved that the constructed operator coincides with the norm resolvent limit of the Sturm-Liouville operators generated by smooth potentialsqn, provided that the condition\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\smallint |\smallint (q_n - q)d\varepsilon |^{\text{2}} dx \to 0$$ \end{document} holds. The convergence of the spectra of these operators to the spectrum of the limit operator is also proved. Similar results are obtained in the case of the whole axis.
引用
收藏
页码:741 / 753
页数:12
相关论文
共 22 条
  • [1] Berezin F. A.(1961)Remarks on the Schrödinger equation with singular potential Dokl. Akad. Nauk SSSR 137 1011-1014
  • [2] Faddeev L. D.(1961)On point interaction for three particle systems in quantum mechanics Dokl. Akad. Nauk SSSR 141 1335-1338
  • [3] Minlos R. A.(1963)On the Lie model Mat. Sb. 4 425-446
  • [4] Faddeev L. D.(1995)Rank-one perturbations at infinite coupling J. Funct. Anal. 128 245-252
  • [5] Berezin F. A.(1995)Rank one perturbations with infinitesimal coupling J. Funct. Anal. 130 345-356
  • [6] Gesztezy F.(1998)Schrödinger operator perturbed by operators related to null-sets Positivity 2 77-99
  • [7] Simon B.(1989)Perturbations of self-adjoint operators by singular sesquilinear forms Ukrain. Mat. Zh. 41 3-19
  • [8] Kiselev A.(1979)On perturbations of the polyharmonic operator by potentials supported by sets of zero measure Dokl. Akad. Nauk SSSR 245 34-36
  • [9] Simon B.(1995)Perturbations on thin sets of high codimension of elliptic operators and extension theory in the space with indefinite metric Zap. Nauchn. Sem. St. Petersburg. Otdel. Mat. Inst. Steklov (POMI) 222 246-292
  • [10] Koshmanenko V.(1987)Perturbation theory for a Sturm-Liouville problem with an interior singularity Proc. Roy. Soc. London Ser. A 414 255-269