Strong approximation of monotone stochastic partial differential equations driven by multiplicative noise

被引:0
作者
Zhihui Liu
Zhonghua Qiao
机构
[1] The Hong Kong University of Science and Technology,Department of Mathematics
[2] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
Stochastics and Partial Differential Equations: Analysis and Computations | 2021年 / 9卷
关键词
Monotone stochastic partial differential equation; Stochastic Allen–Cahn equation; Galerkin finite element method; Euler scheme; Milstein scheme; 65M60; 60H15; 60H35;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a general theory of optimal strong error estimation for numerical approximations of a second-order parabolic stochastic partial differential equation with monotone drift driven by a multiplicative infinite-dimensional Wiener process. The equation is spatially discretized by Galerkin methods and temporally discretized by drift-implicit Euler and Milstein schemes. By the monotone and Lyapunov assumptions, we use both the variational and semigroup approaches to derive a spatial Sobolev regularity under the LωpLt∞H˙1+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\omega ^p L_t^\infty \dot{H}^{1+\gamma }$$\end{document}-norm and a temporal Hölder regularity under the LωpLx2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\omega ^p L_x^2$$\end{document}-norm for the solution of the proposed equation with an H˙1+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}^{1+\gamma }$$\end{document}-valued initial datum for γ∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in [0,1]$$\end{document}. Then we make full use of the monotonicity of the equation and tools from stochastic calculus to derive the sharp strong convergence rates O(h1+γ+τ1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {O}}(h^{1+\gamma }+\tau ^{1/2})$$\end{document} and O(h1+γ+τ(1+γ)/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {O}}(h^{1+\gamma }+\tau ^{(1+\gamma )/2})$$\end{document} for the Galerkin-based Euler and Milstein schemes, respectively.
引用
收藏
页码:559 / 602
页数:43
相关论文
共 62 条
[1]  
Bayer C(2016)From rough path estimates to multilevel Monte Carlo SIAM J. Numer. Anal. 54 1449-1483
[2]  
Friz P(2019)Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg–Landau equations Stoch. Process. Appl. 129 28-69
[3]  
Riedel S(2019)Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen–Cahn equation IMA J. Numer. Anal. 39 2096-2134
[4]  
Schoenmakers J(2017)Approximating stochastic evolution equations with additive white and rough noises SIAM J. Numer. Anal. 55 1958-1981
[5]  
Becker S(2019)Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation with one-sided Lipschitz coefficient SIAM J. Numer. Anal. 57 1815-1841
[6]  
Jentzen A(2017)Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations J. Differ. Equ. 263 3687-3713
[7]  
Bréhier C-E(2019)Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations J. Differ. Equ. 266 5625-5663
[8]  
Cui J(2012)Semigroup splitting and cubature approximations for the stochastic Navier–Stokes equations SIAM J. Numer. Anal. 50 729-746
[9]  
Hong J(2017)Finite element methods for the stochastic Allen–Cahn equation with gradient-type multiplicative noises SIAM J. Numer. Anal. 55 194-216
[10]  
Cao Y(2009)Rate of convergence of space time approximations for stochastic evolution equations Potential Anal. 30 29-64