Weighted Bloch spaces which are Banach spaces

被引:1
作者
Nakazi T. [1 ]
机构
[1] Hokusei Gakuen University, Sapporo, 004-8631, 2-3-1, Ohyachi-Nishi, Atsubetsu-ku
关键词
Banach space; Composition operator; Evaluation; Integral operator; Point derivation; Weighted Bloch space;
D O I
10.1007/s12215-013-0134-6
中图分类号
学科分类号
摘要
Let Bω be a weighted Bloch space on the open unit disc which is a Banach space. In this paper, we study Bω by using four operators, that is, a point derivation, a point evaluation, a composition operator and an integral operator. © 2013 Springer-Verlag Italia.
引用
收藏
页码:427 / 440
页数:13
相关论文
共 12 条
  • [1] Brennan J., Invariant subspaces and rational approximation, J. Funct. Anal., 7, pp. 285-310, (1971)
  • [2] Garnett J.B., Bounded Analytic Functions, (1981)
  • [3] Gimenez J., Malave R., Ramos F.J.C., Composition operators on μ-Bloch type spaces, Rend. Circ. Mat. Palermo, 59, pp. 107-119, (2010)
  • [4] Levinson N., McKean H.P., Weighted trigonometrical approximation on the line with application to the germ field of a stationary Gaussian noise, Acta. Math., 112, pp. 99-143, (1964)
  • [5] Madigan K., Matheson A., Compact composition operators on the Bloch space, Trans. Am. Math. Soc., 347, pp. 2679-2687, (1995)
  • [6] Montes-Rodriguez A., Weighted composition operators on weighted Banach spaces of analytic functions, J. Lond. Math. Soc., 61, 2, pp. 872-884, (2000)
  • [7] Nakazi T., Integral operators on a subspace of holomorphic functions on the disc, Taiwanese J. Math., 12, pp. 389-400, (2008)
  • [8] Thomson J.E., Approximation in the mean by polynomials, Ann. Math., 133, pp. 457-507, (1991)
  • [9] Xiong C., Norm of composition operators on the Bloch space, Bull. Austral. Math. Soc., 70, pp. 293-299, (2004)
  • [10] Yoneda R., Integration operators on weighted Bloch spaces, Nihonkai Math. J., 12, pp. 123-133, (2001)