Universal Complexes in Toric Topology

被引:0
|
作者
Đorđe Baralić
Aleš Vavpetič
Aleksandar Vučić
机构
[1] Mathematical Institute SANU,Institute of Mathematics, Physics and Mechanics, Faculty of Mathematics and Physics
[2] University of Ljubljana,Faculty of Mathematics
[3] University of Belgrade,undefined
来源
Results in Mathematics | 2023年 / 78卷
关键词
Universal complexes; moment-angle complex; Tor-algebra; bigraded Betti numbers; Lusternik–Schnirelmann category; Primary 57S12; 55U05; Secondary 57Q70; 13F55;
D O I
暂无
中图分类号
学科分类号
摘要
We study combinatorial and topological properties of the universal complexes X(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {F}}_p^n)$$\end{document} and K(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K({\mathbb {F}}_p^n)$$\end{document} whose simplices are certain unimodular subsets of Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_p^n$$\end{document}. We calculate their f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{f}$$\end{document}-vectors and the bigraded Betti numbers of their Tor-algebras, show that they are shellable, and find their applications in toric topology and number theory. We show that the Lusternick–Schnirelmann category of the moment angle complex of X(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {F}}_p^n)$$\end{document} is n, provided p is an odd prime, and the Lusternick–Schnirelmann category of the moment angle complex of K(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K({\mathbb {F}}_p^n)$$\end{document} is [n2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\frac{n}{2}]$$\end{document}. Based on the universal complexes, we introduce the Buchstaber invariant sp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_p$$\end{document} for a prime number p.
引用
收藏
相关论文
共 50 条
  • [41] Universal Grobner bases of toric ideals of combinatorial neural codes
    Beer, Melissa
    Davis, Robert
    Elgin, Thomas
    Hertel, Matthew
    Laws, Kira
    Mavi, Rajinder
    Mercurio, Paula
    Newlon, Alexandra
    INVOLVE, A JOURNAL OF MATHEMATICS, 2021, 14 (05): : 723 - 742
  • [42] Imaginary quadratic points on toric varieties via universal torsors
    Marta Pieropan
    Manuscripta Mathematica, 2016, 150 : 415 - 439
  • [43] SIMPLICIAL WEDGE COMPLEXES AND PROJECTIVE TORIC VARIETIES
    Kim, Jin Hong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (01) : 265 - 276
  • [44] Matchings in simplicial complexes, circuits and toric varieties
    Katsabekis, Anargyros
    Thoma, Apostolos
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (02) : 300 - 310
  • [45] A Universal MISCR Based on Network Topology
    Wang, Shujie
    Wen, Jun
    Ma, Limin
    Niu, Yukun
    2021 3RD ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2021), 2021, : 194 - 197
  • [46] A quotient-universal digital topology
    Slapal, Josef
    THEORETICAL COMPUTER SCIENCE, 2008, 405 (1-2) : 164 - 175
  • [47] A universal topology in nonlinear electrochemical systems
    Li, ZL
    Yu, Y
    Liao, H
    Yao, SZ
    CHEMISTRY LETTERS, 2000, (04) : 330 - 331
  • [48] A new topology on the universal path space
    Virk, Ziga
    Zastrow, Andreas
    TOPOLOGY AND ITS APPLICATIONS, 2017, 231 : 186 - 196
  • [49] BRITE: An approach to universal topology generation
    Medina, A
    Lakhina, A
    Matta, I
    Byers, J
    NINTH INTERNATIONAL SYMPOSIUM ON MODELING, ANALYSIS AND SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS, PROCEEDINGS, 2001, : 346 - 353
  • [50] Universal machine learning for topology optimization
    Chi, Heng
    Zhang, Yuyu
    Tang, Tsz Ling Elaine
    Mirabella, Lucia
    Dalloro, Livio
    Song, Le
    Paulino, Glaucio H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 375