Universal Complexes in Toric Topology

被引:0
|
作者
Đorđe Baralić
Aleš Vavpetič
Aleksandar Vučić
机构
[1] Mathematical Institute SANU,Institute of Mathematics, Physics and Mechanics, Faculty of Mathematics and Physics
[2] University of Ljubljana,Faculty of Mathematics
[3] University of Belgrade,undefined
来源
Results in Mathematics | 2023年 / 78卷
关键词
Universal complexes; moment-angle complex; Tor-algebra; bigraded Betti numbers; Lusternik–Schnirelmann category; Primary 57S12; 55U05; Secondary 57Q70; 13F55;
D O I
暂无
中图分类号
学科分类号
摘要
We study combinatorial and topological properties of the universal complexes X(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {F}}_p^n)$$\end{document} and K(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K({\mathbb {F}}_p^n)$$\end{document} whose simplices are certain unimodular subsets of Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_p^n$$\end{document}. We calculate their f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{f}$$\end{document}-vectors and the bigraded Betti numbers of their Tor-algebras, show that they are shellable, and find their applications in toric topology and number theory. We show that the Lusternick–Schnirelmann category of the moment angle complex of X(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {F}}_p^n)$$\end{document} is n, provided p is an odd prime, and the Lusternick–Schnirelmann category of the moment angle complex of K(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K({\mathbb {F}}_p^n)$$\end{document} is [n2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\frac{n}{2}]$$\end{document}. Based on the universal complexes, we introduce the Buchstaber invariant sp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_p$$\end{document} for a prime number p.
引用
收藏
相关论文
共 50 条