Universal Complexes in Toric Topology

被引:0
|
作者
Đorđe Baralić
Aleš Vavpetič
Aleksandar Vučić
机构
[1] Mathematical Institute SANU,Institute of Mathematics, Physics and Mechanics, Faculty of Mathematics and Physics
[2] University of Ljubljana,Faculty of Mathematics
[3] University of Belgrade,undefined
来源
Results in Mathematics | 2023年 / 78卷
关键词
Universal complexes; moment-angle complex; Tor-algebra; bigraded Betti numbers; Lusternik–Schnirelmann category; Primary 57S12; 55U05; Secondary 57Q70; 13F55;
D O I
暂无
中图分类号
学科分类号
摘要
We study combinatorial and topological properties of the universal complexes X(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {F}}_p^n)$$\end{document} and K(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K({\mathbb {F}}_p^n)$$\end{document} whose simplices are certain unimodular subsets of Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_p^n$$\end{document}. We calculate their f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{f}$$\end{document}-vectors and the bigraded Betti numbers of their Tor-algebras, show that they are shellable, and find their applications in toric topology and number theory. We show that the Lusternick–Schnirelmann category of the moment angle complex of X(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X({\mathbb {F}}_p^n)$$\end{document} is n, provided p is an odd prime, and the Lusternick–Schnirelmann category of the moment angle complex of K(Fpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K({\mathbb {F}}_p^n)$$\end{document} is [n2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\frac{n}{2}]$$\end{document}. Based on the universal complexes, we introduce the Buchstaber invariant sp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_p$$\end{document} for a prime number p.
引用
收藏
相关论文
共 50 条
  • [1] Universal Complexes in Toric Topology
    Baralic, Dorde
    Vavpetic, Ales
    Vucic, Aleksandar
    RESULTS IN MATHEMATICS, 2023, 78 (06)
  • [2] The topology of toric symplectic manifolds
    McDuff, Dusa
    GEOMETRY & TOPOLOGY, 2011, 15 (01) : 145 - 190
  • [3] Homotopy theory in toric topology
    Grbic, J.
    Theriault, S.
    RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (02) : 185 - 251
  • [4] Bier Spheres and Toric Topology
    Limonchenko, Ivan Yu.
    Sergeev, Matvey A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 326 (01) : 252 - 268
  • [5] FULLERENES, POLYTOPES AND TORIC TOPOLOGY
    Buchstaber, Victor M.
    Erokhovets, Nikolay Yu.
    COMBINATORIAL AND TORIC HOMOTOPY: INTRODUCTORY LECTURES, 2018, 35 : 67 - 178
  • [6] THE TOPOLOGY OF TORIC ORIGAMI MANIFOLDS
    Holm, Tara S.
    Pires, Ana Rita
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (05) : 885 - 906
  • [7] Categorical aspects of toric topology
    Panov, Taras E.
    Ray, Nigel
    TORIC TOPOLOGY, 2008, 460 : 293 - 322
  • [8] Topology of toric gravitational instantons
    Nilsson, Gustav
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 96
  • [9] The geometry and topology of toric hyperkahler manifolds
    Bielawski, R
    Danceri, AS
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2000, 8 (04) : 727 - 760
  • [10] Rigidity Problems in Toric Topology: A Survey
    Choi, Suyoung
    Masuda, Mikiya
    Suh, Dong Youp
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 275 (01) : 177 - 190