Real zeros of Eisenstein series and Rankin-Selberg L-functions

被引:0
作者
C. Bauer
Y. Wang
机构
[1] Dolby Laboratories,Department of Mathematics
[2] Capital Normal University,undefined
来源
Acta Mathematica Hungarica | 2007年 / 115卷
关键词
Eisenstein series; Rankin-Selberg ; -function; 11F03; 11M36; 11M20;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the Eisenstein series E(z, s) have no real zeroes for s ∈ (0, 1) when the value of the imaginary part of z is in the range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tfrac{1}{5}$$ \end{document} < Im z < 4.94. For very large and very small values of the imaginary part of z, E(z, s) have real zeros in (½, 1), i.e. GRH does not hold for the Eisenstein series. Using these properties, we prove that the Rankin-Selberg L-function attached with the Ramanujan τ-function has no real zeros in the critical strip, except at the central point s = ½.
引用
收藏
页码:13 / 27
页数:14
相关论文
共 12 条
[1]  
Bateman P. T.(1964)On Epstein’s zeta function Acta Arith. 9 365-373
[2]  
Grosswald E.(2004)Computing special values of motivic Experiment. Math. 13 137-149
[3]  
Dokchitser T.(1995)-functions IMRN International Math. Research Notices 6 279-308
[4]  
Hoffstein J.(1994)Siegel zeros and cusp forms Ann. Math. 140 161-117
[5]  
Ramakrishnan D.(1981)Coefficients of Maass forms and the Siegel zero Invent. Math. 64 175-198
[6]  
Hoffsein J.(2003)Values of Ann. Math. 157 891-917
[7]  
Lockhart P.(1939)-series of modular form at the center of critical strips Proc. Camb. Phil. Soc. 35 351-372
[8]  
Kohnen W.(undefined)On the nonnegativity of undefined undefined undefined-undefined
[9]  
Zagier D.(undefined) (½, π) for undefined undefined undefined-undefined
[10]  
Lapid E.(undefined)Contributions to the theory of Ramanujan’s function τ( undefined undefined undefined-undefined