共 87 条
- [1] Barker A(2015)Domain decomposition in time for PDE-constrained optimization Comput. Phys. Commun. 197 136-143
- [2] Stoll M(2001)Flow control: new challenges for a new renaissance Prog. Aerosp. Sci. 37 21-58
- [3] Bewley TR(2000)A general framework for robust control in fluid mechanics Phys. D 138 360-392
- [4] Bewley TR(2005)Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization, part I: the Krylov–Schur solver SIAM J. Sci. Comput. 27 687-713
- [5] Temam R(2005)Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization, part II: the Lagrange–Newton solver and its application to optimal control of steady viscous flows SIAM J. Sci. Comput. 27 714-739
- [6] Ziane M(1998)Parallel Newton–Krylov–Schwarz algorithms for the transonic full potential equation SIAM J. Sci. Comput. 19 246-265
- [7] Biros G(2012)Parallel one-shot Lagrange–Newton–Krylov–Schwarz algorithms for shape optimization of steady incompressible flows SIAM J. Sci. Comput. 34 B584-B605
- [8] Ghattas O(2014)A parallel two-level domain decomposition based one-shot method for shape optimization problems Int. J. Numer. Meth. Eng. 99 945-965
- [9] Biros G(2015)A parallel space-time domain decomposition method for unsteady source inversion problems Inverse Probl. Imag. 9 1069-1091
- [10] Ghattas O(2016)Two-level space–time domain decomposition methods for three-dimensional unsteady inverse source problems J. Sci. Comput. 67 860-882