Bayesian Estimation of Marshall Olkin Extended Inverse Weibull Distribution Using MCMC Approach

被引:1
|
作者
Hassan M. Okasha
A. H. El-Baz
Abdulkareem M. Basheer
机构
[1] King AbdulAziz University,Department of Statistics, Faculty of Science
[2] Al-Azhar University,Department of Mathematics, Faculty of Science
[3] Damietta University,Department of Mathematics, Faculty of Science
[4] Al-Bayda University,undefined
关键词
Marshall Olkin extended inverse Weibull; Bayesian estimation; Maximum likelihood estimation; MCMC approach;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we invoke a new prospective to discuss the estimation of a three-parameter Marshall Olkin extended inverse Weibull distribution based on Markov Chain Monte Carlo (MCMC) approach. The Bayes estimators under the squared error loss and LINEX loss functions are derived for three parameters. MCMC approach is applied to compute the Bayesian estimation of the unknown parameters. Using a real data application, it is shown that the superior performance of Bayesian estimation.
引用
收藏
页码:247 / 257
页数:10
相关论文
共 50 条
  • [1] Bayesian Estimation of Marshall Olkin Extended Inverse Weibull Distribution Using MCMC Approach
    Okasha, Hassan M.
    El-Baz, A. H.
    Basheer, Abdulkareem M.
    JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2020, 21 (01) : 247 - 257
  • [2] On the Marshall–Olkin extended Weibull distribution
    Gauss M. Cordeiro
    Artur J. Lemonte
    Statistical Papers, 2013, 54 : 333 - 353
  • [3] Bayesian estimation of Marshall Olkin extended inverse Weibull under progressive type II censoring
    Lin, Yu-Jau
    Okasha, Hassan M. M.
    Basheer, Abdulkareem M. M.
    Lio, Yuh Long
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2023, 39 (03) : 931 - 957
  • [4] Marshall–Olkin Extended Inverse Weibull Distribution: Different Methods of Estimations
    Okasha H.M.
    Basheer A.M.
    El-Baz A.H.
    Annals of Data Science, 2021, 8 (4) : 769 - 784
  • [5] On Marshall-Olkin Extended Weibull Distribution
    Hanan Haj Ahmad
    Omar M. Bdair
    M. Ahsanullah
    Journal of Statistical Theory and Applications, 2017, 16 (1): : 1 - 17
  • [6] On the Marshall-Olkin extended Weibull distribution
    Cordeiro, Gauss M.
    Lemonte, Artur J.
    STATISTICAL PAPERS, 2013, 54 (02) : 333 - 353
  • [7] Testing for the Marshall–Olkin extended form of the Weibull distribution
    Chrys Caroni
    Statistical Papers, 2010, 51 : 325 - 336
  • [8] Testing for the Marshall-Olkin extended form of the Weibull distribution
    Caroni, Chrys
    STATISTICAL PAPERS, 2010, 51 (02) : 325 - 336
  • [9] A New Marshall Olkin Weibull Distribution
    Cui, Wei
    Yan, Zaizai
    Peng, Xiuyun
    ENGINEERING LETTERS, 2020, 28 (01) : 63 - 68
  • [10] The Weibull Marshall-Olkin Lindley distribution: properties and estimation
    Afify, Ahmed Z.
    Nassar, Mazen
    Cordeiro, Gauss M.
    Kumar, Devendra
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 192 - 204