CVBEM solution for De Saint-Venant orthotropic beams under coupled bending and torsion

被引:0
作者
Giorgio Barone
Antonina Pirrotta
Roberta Santoro
机构
[1] Università degli studi di Enna “Kore”,Facoltà di Ingegneria ed Architettura
[2] Università Degli Studi di Palermo,Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, Dei Materiali (DICAM)
[3] Università degli Studi di Messina,Dipartimento di Ingegneria Civile, Informatica, Edile, Ambientale e Matematica Applicata (DICIEAMA)
来源
Acta Mechanica | 2015年 / 226卷
关键词
Boundary Element Method; Line Integral; Shear Stress Component; Torsion Problem; Shear Stress Function;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to provide a solution for the coupled flexure–torsion De Saint Venant problem for orthotropic beams taking full advantage of the complex variable boundary element method (CVBEM) properly extended using a complex potential function whose real and imaginary parts are related to the shear stress components, the orthotropic ratio and the Poisson coefficients. The proposed method returns the complete stress field and the unitary twist rotation of the cross section at once by performing only line integrals. Numerical applications have been reported to show the validity and the efficiency of the proposed modified CVBEM to handle shear stress problems in the presence of orthotropic materials.
引用
收藏
页码:783 / 796
页数:13
相关论文
共 37 条
[1]  
Tolf G.(1985)St. Venant bending of an orthotropic beam Compos. Struct. 4 1-14
[2]  
Kosmatka J.B.(1991)Saint-Venant solutions for prismatic anisotropic beams Int. J. Solids Struct. 28 917-938
[3]  
Dong S.B.(1993)Flexure–torsion behavior of prismatic beams, part I: section properties via power series AIAA J. 31 170-179
[4]  
Kosmatka J.B.(1993)Determination of centers of flexure using the boundary element method Eng. Anal. Bound. Elem. 12 321-324
[5]  
Chou S.I.(2005)A BEM solution to transverse shear loading of beams Comput. Mech. 36 384-397
[6]  
Mokos V.G.(2005)A BEM solution to transverse shear loading of composite beams Int. J. Solids Struct. 42 3261-3287
[7]  
Sapountzakis E.J.(2008)A displacement solution for transverse shear loading of beams using the boundary element method Comput. Struct. 86 771-779
[8]  
Sapountzakis E.J.(2005)Torsion and flexure analysis of orthotropic beams by a boundary element model Eng. Anal. Bound. Elem. 29 850-858
[9]  
Mokos V.G.(2007)On solution strategies to Saint-Venant problem J. Comput. Appl. Math. 206 473-497
[10]  
Sapountzakis E.J.(2008)Line element-less method (LEM) for beam torsion solution (truly no-mesh method) Acta Mech. 195 349-363