Universal spaces of subdifferentials of sublinear operators ranging in the cone of bounded lower semicontinuous functions

被引:0
作者
Yu. É. Linke
机构
[1] Siberian Branch of the Russian Academy of Sciences,Institute of Systems Dynamics and Control Theory
来源
Mathematical Notes | 2011年 / 89卷
关键词
sublinear operator; subdifferential; topology of simple convergence; lower semicontinuous function; Fréchet problem for universal spaces; separable Banach space; continuous selection;
D O I
暂无
中图分类号
学科分类号
摘要
We study Fréchet’s problem of the universal space for the subdifferentials ∂P of continuous sublinear operators P: V → BC(X)∼ which are defined on separable Banach spaces V and range in the cone BC(X)∼ of bounded lower semicontinuous functions on a normal topological space X. We prove that the space of linear compact operators Lc(ℓ2, C(βX)) is universal in the topology of simple convergence. Here ℓ2 is a separable Hilbert space, and βX is the Stone-Ĉech compactification of X. We show that the images of subdifferentials are also subdifferentials of sublinear operators.
引用
收藏
页码:519 / 527
页数:8
相关论文
共 9 条
[1]  
Linke Yu. É.(1992)Application of Michael’s theorem and its converse to sublinear operators Mat. Zametki 52 67-75
[2]  
Linke Yu. É.(2005)On the cone of bounded lower semicontinuous functions Mat. Zametki 77 886-902
[3]  
Linke Yu. É.(1972)On support sets of sublinear operators Dokl. Akad. Nauk SSSR 207 531-533
[4]  
Gelfand I.(1938)Abstrakte Funktionen und lineare Operatoren Mat. Sb. 446 235-286
[5]  
Bartle R. G.(1955)On compactness in functional analysis Trans. Amer. Math. Soc. 79 35-57
[6]  
Klee V. L.(1955)Some topological properties of convex sets Trans. Amer. Math. Soc. 78 30-45
[7]  
Gelfand I. M.(1939)On rings of continuous functions on topological spaces Dokl. Akad. Nauk SSSR 22 11-15
[8]  
Kolmogorov A. N.(1955)Sur la fonction d’appui des ensembles convexes dans un espace localement convexe Ark. Mat. 3 181-186
[9]  
Hörmander L.(undefined)undefined undefined undefined undefined-undefined