Magnetic instability in AdS/CFT: Schwinger effect and Euler-Heisenberg Lagrangian of supersymmetric QCD

被引:0
作者
Koji Hashimoto
Takashi Oka
Akihiko Sonoda
机构
[1] Osaka University,Department of Physics
[2] RIKEN Nishina Center,Mathematical Physics Lab.
[3] University of Tokyo,Department of Applied Physics
来源
Journal of High Energy Physics | / 2014卷
关键词
Gauge-gravity correspondence; D-branes; Holography and quark-gluon plasmas; QCD;
D O I
暂无
中图分类号
学科分类号
摘要
To reveal the Schwinger effect for quarks, i.e., pair creation process of quarks and antiquarks, we derive the vacuum decay rate at strong coupling using AdS/CFT correspondence. Magnetic fields, in addition to the electric field responsible for the pair creation, causes prominent effects on the rate, and is important also in experiments such as RHIC/LHC heavy ion collisions. In this paper, through the gravity dual we obtain the full Euler-Heisenberg Lagrangian of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 supersymmetric QCD and study the Schwinger mechanism with not only a constant electric field but also a constant magnetic field as external fields. We determine the quark mass and temperature dependence of the Lagrangian. In sharp contrast to the zero magnetic field case, we find that the imaginary part, and thus the vacuum decay rate, diverges in the massless zero-temperature limit. This may be related to a strong instability of the QCD vacuum in strong magnetic fields. The real part of the Lagrangian serves as a generating function for non-linear electro-magnetic responses, and is found such that the Cotton-Mouton effect vanishes. Interestingly, our results of the Schwinger/Cotton-Mouton effects coincide precisely with those of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 supersymmetric QED.
引用
收藏
相关论文
共 101 条
  • [1] Schwinger JS(1951)On gauge invariance and vacuum polarization Phys. Rev. 82 664-undefined
  • [2] Heisenberg W(1936)Consequences of Dirac’s theory of positrons Z. Phys. 98 714-undefined
  • [3] Euler H(2013)Vacuum instability in electric fields via AdS/CFT: Euler-Heisenberg Lagrangian and Planckian thermalization JHEP 10 116-undefined
  • [4] Hashimoto K(1998)Gauge theory correlators from noncritical string theory Phys. Lett. B 428 105-undefined
  • [5] Oka T(1998)Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253-undefined
  • [6] Gubser SS(1980)Vacuum behavior in quantum chromodynamics Phys. Rev. D 21 1095-undefined
  • [7] Klebanov IR(1983)Canonical quantization in non-Abelian background fields. 1 Annals Phys. 145 340-undefined
  • [8] Polyakov AM(2009)Dynamical view of pair creation in uniform electric and magnetic fields Annals Phys. 324 1691-undefined
  • [9] Witten E(2012)Schwinger mechanism enhanced by the Nielsen-Olesen instability Phys. Lett. B 713 117-undefined
  • [10] Yildiz A(2008)The effects of topological charge change in heavy ion collisions: ‘event by event P and CP-violation’ Nucl. Phys. A 803 227-undefined