Volterra integral equations on time scales: stability under constant perturbations via Liapunov direct method

被引:3
作者
Messina E. [1 ]
Russo E. [1 ]
Vecchio A. [2 ]
机构
[1] Dipartimento di Matematica e Applicazioni ‘R. Caccioppoli’, Università degli Studi di Napoli “Federico II”, Via Cintia, Napoli
[2] C.N.R. National Research Council of Italy, Institute for Computational Application ‘Mauro Picone’, Via P. Castellino, 111, Napoli
关键词
Stability; Time scales; Volterra integral equations;
D O I
10.1007/s11587-015-0243-y
中图分类号
学科分类号
摘要
In this paper we consider Volterra integral equations on time scales and describe our study about the long time behavior of their solutions. We provide sufficient conditions for the stability under constant perturbations by using the direct Lyapunov method and we present some examples of application. © 2015, Università degli Studi di Napoli Federico II"."
引用
收藏
页码:345 / 355
页数:10
相关论文
共 35 条
  • [1] Adivar M., Raffoul Y.N., Existence of resolvent for Volterra integral equations on time scales, Bull. Aust. Math. Soc., 82, 1, pp. 139-155, (2010)
  • [2] Agarwal R.P., Difference equations and inequalities. Theory, methods, and applications. Monographs and textbooks in pure and applied mathematics, (2000)
  • [3] Agarwal R.P., Bohner M., Basic calculus on time scales and some of its applications, Results Math., 35, 1-2, pp. 3-22, (1999)
  • [4] Agarwal R.P., Bohner M., O'Regan D., Peterson A., Dynamic equations on time scales: a survey, J. Comput. Appl. Math., 141, 1-2, pp. 1-26, (2002)
  • [5] Anastassiou G.A., Integral operator inequalities on time scales, Int. J. Differ. Equ., 7, 2, pp. 111-137, (2012)
  • [6] Bohner M., Peterson A., A survey of exponential function on times scales, Cubo Mat. Educ., 3, 2, pp. 285-301, (2001)
  • [7] Bohner M., Peterson A., Dynamic equations on time scales. An introduction with applications, (2001)
  • [8] Bohner M., Peterson A., Advances on dynamic equations on time scales, (2003)
  • [9] Bownds J.M., Cushing J.M., Cushing, some stability criteria for linear systems of Volterra integral equations, Funkcial. Ekvac., 15, pp. 101-117, (1972)
  • [10] Burton T.A., Volterra integral and differential equations. Mathematics in Science and Engineering, (2005)