A complete classification of continuous fractional operations on C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document}

被引:0
作者
Yuji Kobayashi
Sin-Ei Takahasi
Makoto Tsukada
机构
[1] Toho University,Department of Information Science
关键词
Fractional operation; Automorphism; Homomorphism; Primary 46N99; 30E99; Secondary 43A25; 12D99;
D O I
10.1007/s10998-017-0204-1
中图分类号
学科分类号
摘要
We completely classify continuous fractional operations on the complex number field C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} modulo equivalence. A continuous fraction is described by a pair of complex numbers. We prove that a continuous fraction is completely characterized by the (conjugate) ratio of two numbers describing the fraction. Furthermore, we show that the set of all the equivalence classes of continuous fractions is equipped with a natural topology and it is homeomorphic to the unit disk {z∈C:|z|≤1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{z\in \mathbb {C}{:}\,|z|\le 1\}$$\end{document}.
引用
收藏
页码:345 / 355
页数:10
相关论文
共 5 条
  • [1] Castro LP(2013)Fractional functions and their representations Complex Anal. Oper. Theory 7 1049-1063
  • [2] Saitoh S(2015)Classification of continuous fractional operations on the real and complex fields Tokyo J. Math. 38 369-380
  • [3] Takahasi S-E(undefined)undefined undefined undefined undefined-undefined
  • [4] Tsukada M(undefined)undefined undefined undefined undefined-undefined
  • [5] Kobayashi Y(undefined)undefined undefined undefined undefined-undefined