We completely classify continuous fractional operations on the complex number field C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {C}$$\end{document} modulo equivalence. A continuous fraction is described by a pair of complex numbers. We prove that a continuous fraction is completely characterized by the (conjugate) ratio of two numbers describing the fraction. Furthermore, we show that the set of all the equivalence classes of continuous fractions is equipped with a natural topology and it is homeomorphic to the unit disk {z∈C:|z|≤1}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{z\in \mathbb {C}{:}\,|z|\le 1\}$$\end{document}.