Morita Equivalence for Rings with Involution

被引:0
作者
Ara P. [1 ]
机构
[1] Departement de Matemàtiques, Edifici Cc, Univ. Autònoma de Barcelona
关键词
Idempotent rings; Inner product; Morita equivalence; Rings with involution;
D O I
10.1023/A:1009958527372
中图分类号
学科分类号
摘要
We develop the theory of Morita equivalence for rings with involution, and we show the corresponding fundamental representation theorem. In order to allow applications to operator algebras, we work within the class of idempotent nondegenerate rings. We also prove that two commutative rings with involution are Morita *-equivalent if and only if they are *-isomorphic.
引用
收藏
页码:227 / 247
页数:20
相关论文
共 19 条
  • [1] Abrams G., Monta equivalence for rings with local units, Comm. Algebra, 11, 8, pp. 801-837, (1983)
  • [2] Abrams G.D., Anh P.N., Marki L., A topological approach to Morita equivalence for rings with local units, Rocky Mountain J. Math., 22, pp. 405-416, (1992)
  • [3] Anderson F.W., Fuller K.R., Rings and Categories of Modules, 2nd Edn, (1992)
  • [4] Anh P.N., Marki L., Morita equivalence for rings without identity, Tsukuba J. Math., 11, pp. 1-16, (1987)
  • [5] Anh P.N., Morita equivalence and tensor product rings, Comm. Algebra, 17, pp. 2717-2737, (1989)
  • [6] Ara P., Morita Equivalence and Pedersen's Ideals
  • [7] Beer W., On Morita equivalence of nuclear C*-algebras, J. Pure Appl. Algebra, 26, pp. 249-267, (1982)
  • [8] Brown L.G., Green P., Rieffel M.A., Stable isomorphism and strong Morita equivalence of C*-algebras, Pacific J. Math., 71, pp. 349-363, (1977)
  • [9] Busby R.C., Double centralizers and extensions of C*-algebras, Trans. Amer. Math. Soc., 132, pp. 79-99, (1968)
  • [10] Garcia J.L., Simon J.J., Morita equivalence for idempotent rings, J. Pure Appl. Algebra, 76, pp. 39-56, (1991)