A note on optimal Hermite interpolation in Sobolev spaces

被引:0
|
作者
Guiqiao Xu
Xiaochen Yu
机构
[1] Tianjin Normal University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2022卷
关键词
Optimal Hermite interpolation; Sobolev space; Worst-case setting; 41A05; 41A25; 41A46;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the optimal Hermite interpolation of Sobolev spaces W∞n[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W_{\infty }^{n}[a,b]$\end{document}, n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\in \mathbb{N}$\end{document} in space L∞[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }[a,b]$\end{document} and weighted spaces Lp,ω[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p,\omega }[a,b]$\end{document}, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p< \infty $\end{document} with ω a continuous-integrable weight function in (a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(a,b)$\end{document} when the amount of Hermite data is n. We proved that the Lagrange interpolation algorithms based on the zeros of polynomial of degree n with the leading coefficient 1 of the least deviation from zero in L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }$\end{document} (or Lp,ω[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p,\omega }[a,b]$\end{document}, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p<\infty $\end{document}) are optimal for W∞n[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W_{\infty }^{n}[a,b]$\end{document} in L∞[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }[a,b]$\end{document} (or Lp,ω[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p,\omega }[a,b]$\end{document}, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p<\infty $\end{document}). We also give the optimal Hermite interpolation algorithms when we assume the endpoints are included in the interpolation systems.
引用
收藏
相关论文
共 50 条
  • [41] Sobolev spaces on p.c.f. self-similar sets II: Boundary behavior and interpolation theorems
    Cao, Shiping
    Qiu, Hua
    FORUM MATHEMATICUM, 2022, 34 (03) : 749 - 779
  • [42] CONSTRUCTION OF OPTIMAL GRID INTERPOLATION FORMULAS IN SOBOLEV SPACE <(L-2(m))over tilde>(H) OF PERIODIC FUNCTION OF n VARIABLES BY SOBOLEV METHOD
    Mamatova, N. H.
    Hayotov, A. R.
    Shadimetov, Kh. M.
    UFA MATHEMATICAL JOURNAL, 2013, 5 (01): : 90 - 101
  • [43] Spectra of Multiplication Operators in Sobolev Spaces
    Brooks, Hannalie
    Moller, Manfred
    RESULTS IN MATHEMATICS, 2009, 55 (3-4) : 281 - 293
  • [44] Embedding of Sobolev spaces and properties of the domain
    O. V. Besov
    Mathematical Notes, 2014, 96 : 326 - 331
  • [45] SOBOLEV SPACES OVER R∞I
    Kalita, Hemanta
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (04): : 751 - 771
  • [46] Multipliers in weighted Sobolev spaces on the axis
    Myrzagaliyeva, A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 107 (03): : 105 - 115
  • [47] Embedding theorems for generalized Sobolev spaces
    A. S. Romanov
    Siberian Mathematical Journal, 1999, 40 : 787 - 792
  • [48] Approximation and Orthogonality in Sobolev Spaces on a Triangle
    Yuan Xu
    Constructive Approximation, 2017, 46 : 349 - 434
  • [49] On weighted critical imbeddings of Sobolev spaces
    D. E. Edmunds
    H. Hudzik
    M. Krbec
    Mathematische Zeitschrift, 2011, 268 : 585 - 592
  • [50] Spectra of Multiplication Operators in Sobolev Spaces
    Hannalie Brooks
    Manfred Möller
    Results in Mathematics, 2009, 55