A note on optimal Hermite interpolation in Sobolev spaces

被引:0
|
作者
Guiqiao Xu
Xiaochen Yu
机构
[1] Tianjin Normal University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2022卷
关键词
Optimal Hermite interpolation; Sobolev space; Worst-case setting; 41A05; 41A25; 41A46;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the optimal Hermite interpolation of Sobolev spaces W∞n[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W_{\infty }^{n}[a,b]$\end{document}, n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\in \mathbb{N}$\end{document} in space L∞[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }[a,b]$\end{document} and weighted spaces Lp,ω[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p,\omega }[a,b]$\end{document}, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p< \infty $\end{document} with ω a continuous-integrable weight function in (a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(a,b)$\end{document} when the amount of Hermite data is n. We proved that the Lagrange interpolation algorithms based on the zeros of polynomial of degree n with the leading coefficient 1 of the least deviation from zero in L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }$\end{document} (or Lp,ω[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p,\omega }[a,b]$\end{document}, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p<\infty $\end{document}) are optimal for W∞n[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W_{\infty }^{n}[a,b]$\end{document} in L∞[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }[a,b]$\end{document} (or Lp,ω[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p,\omega }[a,b]$\end{document}, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\le p<\infty $\end{document}). We also give the optimal Hermite interpolation algorithms when we assume the endpoints are included in the interpolation systems.
引用
收藏
相关论文
共 50 条
  • [31] Sobolev spaces on warped products
    Gigli, Nicola
    Han, Bang-Xian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (08) : 2059 - 2095
  • [32] Isometries between Sobolev spaces
    Biegert, Markus
    Nittka, Robin
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (17-18) : 2059 - 2077
  • [33] On one generalization of Sobolev spaces
    A. S. Romanov
    Siberian Mathematical Journal, 1998, 39 : 821 - 824
  • [34] Sampling inequalities in Sobolev spaces
    Arcangeli, Remi
    Jose Torrens, Juan
    JOURNAL OF APPROXIMATION THEORY, 2014, 182 : 18 - 28
  • [35] Interpolation by radial basis functions on Sobolev space
    Yoon, J
    JOURNAL OF APPROXIMATION THEORY, 2001, 112 (01) : 1 - 15
  • [36] A new approach to Sobolev spaces in metric measure spaces
    Sjodin, Tomas
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 142 : 194 - 237
  • [37] VARIABLE EXPONENT SOBOLEV SPACES ON METRIC MEASURE SPACES
    Harjuletho, Petteri
    Hasto, Peter
    Pere, Mikko
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2006, 36 (01) : 79 - 94
  • [38] Optimal order quasi-Monte Carlo integration in weighted Sobolev spaces of arbitrary smoothness
    Goda, Takashi
    Suzuki, Kosuke
    Yoshiki, Takehito
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) : 505 - 518
  • [39] Morrey-Sobolev Spaces on Metric Measure Spaces
    Yufeng Lu
    Dachun Yang
    Wen Yuan
    Potential Analysis, 2014, 41 : 215 - 243
  • [40] Morrey-Sobolev Spaces on Metric Measure Spaces
    Lu, Yufeng
    Yang, Dachun
    Yuan, Wen
    POTENTIAL ANALYSIS, 2014, 41 (01) : 215 - 243