The Representations of Lie Groups and¶Geometric Quantizations

被引:0
作者
Qiang Zhao
机构
[1] School of Mathematics,
[2] Peking University,undefined
[3] Beijing,undefined
[4] China,undefined
[5] and Department of Mathematics,undefined
[6] Northwest Normal University,undefined
[7] Lanzhou,undefined
[8] China,undefined
来源
Communications in Mathematical Physics | 1998年 / 194卷
关键词
Discrete Series; Geometric Quantization; Coadjoint Orbit; Spherical Representation; Holomorphic Discrete Series;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we discuss the relation between representations of Lie groups and geometric quantizations. A series of representations of Lie groups are constructed by geometric quantization of coadjoint orbits. Particularly, all representations of compact Lie groups, holomorphic discrete series of representations and spherical representations of reductive Lie groups are constructed by geometric quantizations of elliptic and hyperbolic coadjoint orbits.
引用
收藏
页码:135 / 148
页数:13
相关论文
共 50 条
  • [31] WAVE FRONT SETS OF REDUCTIVE LIE GROUP REPRESENTATIONS II
    Harris, Benjamin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (08) : 5931 - 5962
  • [32] Partial coherent state transforms, G x T-invariant Kahler structures and geometric quantization of cotangent bundles of compact Lie groups
    Mourao, Jose M.
    Nunes, Joao P.
    Pereira, Miguel B.
    ADVANCES IN MATHEMATICS, 2020, 368
  • [33] Amenability and representation theory of pro-Lie groups
    Beltita, Daniel
    Zergane, Amel
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) : 701 - 722
  • [34] Separation of Coadjoint Orbits of Generalized Diamond Lie Groups
    Abdelmoula, L.
    Bouaziz, Y.
    MATHEMATICAL NOTES, 2022, 111 (5-6) : 659 - 675
  • [35] Spectral synthesis for coadjoint orbits of nilpotent Lie groups
    Ingrid Beltiţă
    Jean Ludwig
    Mathematische Zeitschrift, 2016, 284 : 1111 - 1136
  • [36] Nilpotent Lie Groups: Fourier Inversion and Prime Ideals
    Lin, Ying-Fen
    Ludwig, Jean
    Molitor-Braun, Carine
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (02) : 345 - 376
  • [37] Separation of Coadjoint Orbits of Generalized Diamond Lie Groups
    L. Abdelmoula
    Y. Bouaziz
    Mathematical Notes, 2022, 111 : 659 - 675
  • [38] Nilpotent Lie Groups: Fourier Inversion and Prime Ideals
    Ying-Fen Lin
    Jean Ludwig
    Carine Molitor-Braun
    Journal of Fourier Analysis and Applications, 2019, 25 : 345 - 376
  • [39] Amenability and representation theory of pro-Lie groups
    Daniel Beltiţă
    Amel Zergane
    Mathematische Zeitschrift, 2017, 286 : 701 - 722
  • [40] Spectral synthesis for coadjoint orbits of nilpotent Lie groups
    Beltita, Ingrid
    Ludwig, Jean
    MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (3-4) : 1111 - 1136