On Weierstrass semigroups and sets: a review with new results

被引:0
|
作者
Cícero Carvalho
Takao Kato
机构
[1] Universidade Federal de Uberlândia,Faculdade de Matemática
[2] Yamaguchi University,Department of Mathematical Sciences, Faculty of Science
来源
Geometriae Dedicata | 2009年 / 139卷
关键词
Weierstrass point; Weierstrass semigroups; -Weierstrass sets; Algebraic geometric codes; Pure gaps; Total inflection point; Plane curve; Hyperelliptic curve; Hermitian curve; 14H55; 11T71; 11G20; 94B27;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we present a survey of the main results in the theory of Weierstrass semigroups at several points, with special attention to the determination of bounds for the cardinality of its set of gaps. We also review results on applications to the theory of error correcting codes. We then recall a generalization of the concept of Weierstrass semigroup, which is the Weierstrass set associated to a linear system and several points. We finish by presenting new results on this Weierstrass set, including some on the cardinality of its set of gaps.
引用
收藏
页码:195 / 210
页数:15
相关论文
共 29 条
  • [1] On Weierstrass semigroups and sets: a review with new results
    Carvalho, Cicero
    Kato, Takao
    GEOMETRIAE DEDICATA, 2009, 139 (01) : 195 - 210
  • [2] Weierstrass semigroups at every point of the Suzuki curve
    Bartoli, Daniele
    Montanucci, Maria
    Zini, Giovanni
    ACTA ARITHMETICA, 2021, 197 (01) : 1 - 20
  • [3] Weierstrass semigroups on Castelnuovo curves
    Pflueger, Nathan
    JOURNAL OF ALGEBRA, 2021, 582 : 117 - 135
  • [4] REALIZING NUMERICAL SEMIGROUPS AS WEIERSTRASS SEMIGROUPS: A COMPUTATIONAL APPROACH
    Pimentel, Francisco L. R.
    Oliveira, Gilvan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2006, 6 (03): : 445 - 454
  • [5] Triples of rational points on the Hermitian curve and their Weierstrass semigroups
    Matthews, Gretchen L.
    Skabelund, Dane
    Wills, Michael
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (08)
  • [6] Weierstrass semigroups, pure gaps and codes on function fields
    Alonso S. Castellanos
    Erik A. R. Mendoza
    Luciane Quoos
    Designs, Codes and Cryptography, 2024, 92 : 1219 - 1242
  • [7] WEIERSTRASS SEMIGROUPS IN AN ASYMPTOTICALLY OPTIMAL TOWER OF FUNCTION FIELDS
    Almeida Filho, Gilberto B.
    Tafazolian, Saeed
    Torres, Fernando
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025, 19 (03) : 755 - 792
  • [8] Weierstrass semigroups, pure gaps and codes on function fields
    Castellanos, Alonso S.
    Mendoza, Erik A. R.
    Quoos, Luciane
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (05) : 1219 - 1242
  • [9] Non-cyclic Weierstrass semigroups
    Kim, SJ
    Komeda, J
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 993 - 1005
  • [10] Numerical semigroups which cannot be realized as semigroups of Galois Weierstrass points
    Kim, SJ
    Komeda, J
    ARCHIV DER MATHEMATIK, 2001, 76 (04) : 265 - 273