共 50 条
- [1] Lau S.L.(1981)Amplitude incremental variational principle for nonlinear vibration of elastic systems ASME J. Appl. Mech. 48 959-964
- [2] Cheung Y.K.(1986)On the equivalence of the incremental harmonic balance method and the harmonic balance-Newton Raphson method ASME J. Appl. Mech. 53 455-457
- [3] Ferri A.A.(1983)Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear system ASME J. Appl. Mech. 50 871-876
- [4] Lau S.L.(1984)Nonlinear vibration of thin elastic plates, part 1: Generalized incremental Hamilton’s principle and element formulation; part 2: Internal resonance by amplitude-incremental finite element ASME J. Appl. Mech. 51 837-851
- [5] Cheung Y.K.(1990)Application of the incremental harmonic balance method to cubic non-linearity systems J. Sound Vib. 140 273-286
- [6] Wu S.Y.(1991)The Hopf bifurcation and limit cycle by the incremental harmonic balance method Comput. Methods Appl. Mech. Eng. 91 1109-1121
- [7] Lau S.L.(1993)Solution diagram of nonlinear dynamic-systems by IHB method J. Sound Vib. 167 303-316
- [8] Cheung Y.K.(1999)Non-linear dynamics of a two-dimensional airfoil by incremental harmonic balance method J. Sound Vib. 226 493-517
- [9] Wu S.Y.(2003)Bifurcation and chaos of a harmonically excited oscillator with both stiffness and viscous damping piecewise linearities by incremental harmonic balance method J. Sound Vib. 264 873-882
- [10] Cheung Y.K.(2003)A numerical technique to predict periodic and quasi-periodic response of nonlinear dynamic systems Comput. Struct. 81 1383-1393