Configuration spaces of labeled particles and finite Eilenberg-MacLane complexes

被引:0
作者
Dobrinskaya N.È. [1 ]
机构
[1] Department of Higher Geometry and Topology, Faculty of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow
基金
俄罗斯基础研究基金会;
关键词
Configuration Space; Orbit Space; Hyperplane Arrangement; Artin Group; Coxeter System;
D O I
10.1134/S0081543806010056
中图分类号
学科分类号
摘要
For any Coxeter system (W, S), the group W acts naturally on the complement of the associated complex hyperplane arrangement. By the well-known conjecture, the orbit space of this action is the classifying space of the corresponding Artin group. We describe some properties of configuration spaces of particles labeled by elements of a partial monoid and use them to prove that the orbit space mentioned in the conjecture is the classifying space of the positive Artin monoid. In particular, the conjecture reduces to a problem concerning the group completion of this monoid. © Pleiades Publishing, Inc., 2006.
引用
收藏
页码:30 / 46
页数:16
相关论文
共 28 条
[1]  
Bourbaki N., Lie Groups and Lie Algebras, (1972)
[2]  
Dobrinskaya N.E., Orbit Spaces of Free Actions of groups on Complements of Configurations of Subspaces, (2003)
[3]  
Dobrinskaya N.E., The Arnol'd-Thom-Pham conjecture and the classifying space of a, positive artin monoid, Usp. Mat. Nauk, 57, 6, pp. 181-182, (2002)
[4]  
Russ. Math. Surv., 57, pp. 1215-1217, (2002)
[5]  
Barratt M., Priddy S., On the homology of non-connected monoids and their associated groups, Comment. Math. Helv., 47, pp. 1-14, (1972)
[6]  
Brieskorn E., Die fundamentalgruppe des raumes der regulären orbits einer endlichen komplexen spiegelungsgruppe, Invent. Math., 12, pp. 57-61, (1971)
[7]  
Brieskorn E., Saito K., Artin-gruppen und coxeter-gruppen, Invent. Math., 17, pp. 245-271, (1972)
[8]  
Charney R., Davis M.W., The K(π, 1)-problem for hyperplane complements associated to infinite reflection groups, J. Am. Math. Soc., 8, 3, pp. 597-627, (1995)
[9]  
Charney R., Davis M.W., Finite K(π, 1)'s for artin groups, Ann. Math. Stud., 138, pp. 110-124, (1995)
[10]  
Deligne P., Les immeubles des groupes de tresses généralises, Invent. Math., 17, pp. 273-302, (1972)