A stability theorem for lines in Galois planes of prime order

被引:0
|
作者
Tamás Szőonyi
Zsuzsa Weiner
机构
[1] Eötvös Loránd University,Department of Computer Science
[2] Computer and Automation Research Institute of the Hungarian Academy of Sciences,undefined
[3] Prezi.com,undefined
来源
Designs, Codes and Cryptography | 2012年 / 62卷
关键词
Finite geometry; Galois planes; Blocking sets; Stability theorem; 51E21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that a point set of size less than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3}{2}(q+1)}$$\end{document} in PG(2, q), q prime, that has relatively few 0-secants must contain many collinear points. More precise bounds can be found in Theorem 4.
引用
收藏
页码:103 / 108
页数:5
相关论文
共 50 条