Short intervals asymptotic formulae for binary problems with primes and powers, II: density 1

被引:0
作者
Alessandro Languasco
Alessandro Zaccagnini
机构
[1] Università di Padova,Dipartimento di Matematica
[2] Università di Parma,Dipartimento di Matematica e Informatica
来源
Monatshefte für Mathematik | 2016年 / 181卷
关键词
Waring-Goldbach problem; Hardy-Littlewood method; Primary 11P32; Secondary 11P55; 11P05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that suitable asymptotic formulae in short intervals hold for the problems of representing an integer as a sum of a prime square and a square, or a prime square. Such results are obtained both assuming the Riemann Hypothesis and in the unconditional case.
引用
收藏
页码:419 / 435
页数:16
相关论文
共 9 条
  • [1] Daniel S(2001)On the sum of a square and a square of a prime Math. Proc. Camb. Phil. Soc. 131 1-22
  • [2] Languasco A(1994)On Linnik’s theorem on Goldbach numbers in short intervals and related problems Ann. Inst. Fourier 44 307-322
  • [3] Perelli A(2016)Sum of one prime and two squares of primes in short intervals J. Numb. Theory 159 1945-1960
  • [4] Languasco A(1974)Hilbert’s inequality J. Lond. Math. Soc. 8 73-82
  • [5] Zaccagnini A(1977)On the fractional parts of Ann. Inst. Fourier 27 1-30
  • [6] Montgomery HL(undefined) and related sequences. II undefined undefined undefined-undefined
  • [7] Vaughan RC(undefined)undefined undefined undefined undefined-undefined
  • [8] Saffari B(undefined)undefined undefined undefined undefined-undefined
  • [9] Vaughan RC(undefined)undefined undefined undefined undefined-undefined