Schottky nanocontact on single crystalline ZnO nanorod using conductive atomic force microscopy

被引:0
|
作者
S. K. Panda
S. B. Sant
C. Jacob
Hyunjung Shin
机构
[1] Indian Institute of Technology,Materials Science Centre
[2] Indian Institute of Technology,Department of Metallurgical and Materials Engineering
[3] Sungkyunkwan University,Department of Energy Science
来源
关键词
ZnO; Nanorods; Conducting atomic force microscopy; Nanoscale Schottky contact; TEM; Photoluminescence;
D O I
暂无
中图分类号
学科分类号
摘要
This article reports the formation of Schottky nanocontacts on single crystalline ZnO nanorods (NR) using atomic force microscopy (AFM) with a PtIr-coated Si cantilever in a contact mode. ZnO NRs were synthesized by thermal evaporation of metallic zinc thin film followed by annealing. The NRs are [112¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{2} $$\end{document}0] directed (i.e., along a-axis) which is quite unusual for wurtzite ZnO. The appearance of an intense visible emission band in room-temperature photoluminescence indicates the presence of a high density of intrinsic defects confirming n-type ZnO. The PtIr tip/ZnO Schottky nanocontacts with an ultrafine effective contact radius ~0.5 nm on horizontally dispersed NRs show an ideality factor of ~7, turn on voltage of ~1.0 V, Schottky barrier height of ~0.65 eV, breakdown voltage of ~−4.7 V, and ON to OFF current ratio of ~500 at ±2 V. The junction corresponds to a nanoscale Schottky contact with satisfactory properties which is comparable to the other PtIr/ZnO or Pt/ZnO reports at higher loading forces. Single crystallinity and contact on the side faces of the horizontally dispersed NRs are primarily thought to be the key factors for higher device performances.
引用
收藏
相关论文
共 50 条
  • [41] The Effect of Relative Humidity in Conductive Atomic Force Microscopy
    Yuan, Yue
    Lanza, Mario
    ADVANCED MATERIALS, 2024, 36 (51)
  • [42] Stripe noise removal in conductive atomic force microscopy
    Mian Li
    Jan Rieck
    Beatriz Noheda
    Jos B. T. M. Roerdink
    Michael H. F. Wilkinson
    Scientific Reports, 14
  • [43] Stripe noise removal in conductive atomic force microscopy
    Li, Mian
    Rieck, Jan
    Noheda, Beatriz
    Roerdink, Jos B. T. M.
    Wilkinson, Michael H. F.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [44] Understanding Current Instabilities in Conductive Atomic Force Microscopy
    Jiang, Lanlan
    Weber, Jonas
    Puglisi, Francesco Maria
    Pavan, Paolo
    Larcher, Luca
    Frammelsberger, Werner
    Benstetter, Guenther
    Lanza, Mario
    MATERIALS, 2019, 12 (03)
  • [45] Enhanced electrical performance for conductive atomic force microscopy
    Blasco, X
    Nafria, M
    Aymerich, X
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (01):
  • [46] Superhard, conductive coatings for atomic force microscopy cantilevers
    Ronning, C
    Wondratschek, O
    Büttner, M
    Hofsäss, H
    Zimmermann, J
    Leiderer, P
    Boneberg, J
    APPLIED PHYSICS LETTERS, 2001, 79 (19) : 3053 - 3055
  • [47] Detection of percolating paths in polyhedral segregated network composites using electrostatic force microscopy and conductive atomic force microscopy
    Waddell, J.
    Ou, R.
    Capozzi, C. J.
    Gupta, S.
    Parker, C. A.
    Gerhardt, R. A.
    Seal, K.
    Kalinin, S. V.
    Baddorf, A. P.
    APPLIED PHYSICS LETTERS, 2009, 95 (23)
  • [48] Study on electronic transport performance of Ag-ZnO film by photoassisted conductive atomic force microscopy
    Zhang, Yidong
    MICROELECTRONICS INTERNATIONAL, 2024, 41 (02) : 103 - 108
  • [49] Electrical properties of ZnO nanorods studied by conductive atomic force microscopy (vol 110, 052005, 2011)
    Beinik, I.
    Kratzer, M.
    Wachauer, A.
    Wang, L.
    Lechner, R. T.
    Teichert, C.
    Motz, C.
    Anwand, W.
    Brauer, G.
    Chen, X. Y.
    Hsu, Y. F.
    Djurisic, A. B.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (07)
  • [50] Stretching single polysaccharides and proteins using atomic force microscopy
    Marszalek, Piotr E.
    Dufrene, Yves F.
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (09) : 3523 - 3534