Schottky nanocontact on single crystalline ZnO nanorod using conductive atomic force microscopy

被引:0
|
作者
S. K. Panda
S. B. Sant
C. Jacob
Hyunjung Shin
机构
[1] Indian Institute of Technology,Materials Science Centre
[2] Indian Institute of Technology,Department of Metallurgical and Materials Engineering
[3] Sungkyunkwan University,Department of Energy Science
来源
关键词
ZnO; Nanorods; Conducting atomic force microscopy; Nanoscale Schottky contact; TEM; Photoluminescence;
D O I
暂无
中图分类号
学科分类号
摘要
This article reports the formation of Schottky nanocontacts on single crystalline ZnO nanorods (NR) using atomic force microscopy (AFM) with a PtIr-coated Si cantilever in a contact mode. ZnO NRs were synthesized by thermal evaporation of metallic zinc thin film followed by annealing. The NRs are [112¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{2} $$\end{document}0] directed (i.e., along a-axis) which is quite unusual for wurtzite ZnO. The appearance of an intense visible emission band in room-temperature photoluminescence indicates the presence of a high density of intrinsic defects confirming n-type ZnO. The PtIr tip/ZnO Schottky nanocontacts with an ultrafine effective contact radius ~0.5 nm on horizontally dispersed NRs show an ideality factor of ~7, turn on voltage of ~1.0 V, Schottky barrier height of ~0.65 eV, breakdown voltage of ~−4.7 V, and ON to OFF current ratio of ~500 at ±2 V. The junction corresponds to a nanoscale Schottky contact with satisfactory properties which is comparable to the other PtIr/ZnO or Pt/ZnO reports at higher loading forces. Single crystallinity and contact on the side faces of the horizontally dispersed NRs are primarily thought to be the key factors for higher device performances.
引用
收藏
相关论文
共 50 条
  • [31] Single-bit failure analysis at a nanometer resolution by conductive atomic force microscopy
    Jiang, Yong
    Lai, Li-Lung
    Zhou, Jian-Jun
    MICROELECTRONICS RELIABILITY, 2012, 52 (01) : 159 - 164
  • [32] Characterization of photoresponse in single Si nanowire p-n junction using conductive atomic force microscopy
    Dhyani, Veerendra
    Das, Samaresh
    2016 IEEE PHOTONICS CONFERENCE (IPC), 2016, : 192 - 193
  • [33] Domain structures of single layer graphene imaged with conductive probe atomic force microscopy
    Kwon, Sangku
    Chung, H. J.
    Seo, Sunae
    Park, Jeong Young
    SURFACE AND INTERFACE ANALYSIS, 2012, 44 (06) : 768 - 771
  • [34] The conductive properties of single DNA molecules studied by torsion tunneling atomic force microscopy
    Wang, W.
    Niu, D. X.
    Jiang, C. R.
    Yang, X. J.
    NANOTECHNOLOGY, 2014, 25 (02)
  • [35] Current properties of GaNV-defect using conductive atomic force microscopy
    Lee, Lino
    Ku, Ching-Shun
    Ke, Wen-Cheng
    Ho, Chih-Wei
    Huang, Huai-Ying
    Lee, Ming-Chih
    Chen, Wen-Hsiung
    Chou, Wu-Chin
    Chen, Wei-Kuo
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2006, 45 (29-32): : L817 - L820
  • [36] Alignment control of liquid crystals using conductive atomic force microscopy nanolithography
    Lin, Tzu-Chieh
    Chao, Chih-Yu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (06) : 4583 - 4585
  • [37] Local conductance measurement of graphene layer using conductive atomic force microscopy
    Ahmad, Muneer
    Han, Sang A.
    Tien, D. Hoang
    Jung, Jongwan
    Seo, Yongho
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (05)
  • [38] Characterization of designed cobaltacarborane porphyrins using conductive probe atomic force microscopy
    Lyles, Venetia D.
    Serem, Wilson K.
    Hao, Erhong
    Vicente, M. Graca H.
    Garno, Jayne C.
    AIMS MATERIALS SCIENCE, 2016, 3 (02) : 380 - 389
  • [39] Current-Limited Conductive Atomic Force Microscopy
    Weber, Jonas
    Yuan, Yue
    Pazos, Sebastian
    Kuehnel, Fabian
    Metzke, Christoph
    Schaetz, Josef
    Frammelsberger, Werner
    Benstetter, Guenther
    Lanza, Mario
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (48) : 56365 - 56374
  • [40] Hydrocarbons in the Meniscus: Effects on Conductive Atomic Force Microscopy
    Tolman, Nathan L.
    Bai, Ruobing
    Liu, Haitao
    LANGMUIR, 2023, 39 (12) : 4274 - 4281