Birationality of moduli spaces of twisted U(p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {U}(p,q)$$\end{document}-Higgs bundles

被引:0
作者
Peter B. Gothen
Azizeh Nozad
机构
[1] Centro de Matemática da Universidade do Porto,Faculdade de Ciências da Universidade do Porto
关键词
Higgs bundles; Quiver bundles; Indefinite unitary group; Birationality of moduli; Primary 14D20; Secondary 14H60; 53C07;
D O I
10.1007/s13163-016-0207-0
中图分类号
学科分类号
摘要
A U(p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {U}(p,q)$$\end{document}-Higgs bundle on a Riemann surface (twisted by a line bundle) consists of a pair of holomorphic vector bundles, together with a pair of (twisted) maps between them. Their moduli spaces depend on a real parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. In this paper we study wall crossing for the moduli spaces of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-polystable twisted U(p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {U}(p,q)$$\end{document}-Higgs bundles. Our main result is that the moduli spaces are birational for a certain range of the parameter and we deduce irreducibility results using known results on Higgs bundles. Quiver bundles and the Hitchin–Kobayashi correspondence play an essential role.
引用
收藏
页码:91 / 128
页数:37
相关论文
共 51 条
[1]  
Álvarez-Cónsul L(2001)Dimensional reduction, SL(2, Int. J. Math. 12 159-201
[2]  
García-Prada O(2003)-equivariant bundles and stable holomorphic chains Commun. Math. Phys. 238 1-33
[3]  
Álvarez Cónsul L(1994)Hitchin–Kobayashi correspondence, quivers, and vortices J. Lond. Math. Soc. (2) 49 219-231
[4]  
García-Prada O(1991)An infinitesimal study of the moduli of Hitchin pairs J. Differ. Geom. 33 169-213
[5]  
Biswas I(1996)Special metrics and stability for holomorphic bundles with global sections Math. Ann. 304 225-252
[6]  
Ramanan S(2003)Stable triples, equivariant bundles and dimensional reduction J. Differ. Geom. 64 111-170
[7]  
Bradlow SB(2004)Surface group representations and U Math. Ann. 328 299-351
[8]  
Bradlow SB(2006)-Higgs bundles Geom. Dedic. 122 185-213
[9]  
García-Prada O(2015)Moduli spaces of holomorphic triples over compact Riemann surfaces Geom. Dedic. 175 1-48
[10]  
Bradlow SB(1988)Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces J. Differ. Geom. 28 361-382