Local and Non-Local Aspects of Quantum Gravity

被引:0
|
作者
H.-H. v. Borzeszkowski
B. K. Datta
V. de Sabbata
L. Ronchetti
H.-J. Treder
机构
[1] Technical University Berlin,Institute for Theoretical Physics
[2] ICSC-World Laboratory,INFN (National Institute of Nuclear Physics)
[3] Bologna section,INFN
[4] Via Irnerio 46,undefined
[5] Ferrara section,undefined
来源
Foundations of Physics | 2002年 / 32卷
关键词
quantum gravity; Rosenfeld uncertainty; Riemann–Cartan and affine geometries;
D O I
暂无
中图分类号
学科分类号
摘要
The analysis of the measurement of gravitational fields leads to the Rosenfeld inequalities. They say that, as an implication of the equivalence of the inertial and passive gravitational masses of the test body, the metric cannot be attributed to an operator that is defined in the frame of a local canonical quantum field theory. This is true for any theory containing a metric, independently of the geometric framework under consideration and the way one introduces the metric in it. Thus, to establish a local quantum field theory of gravity one has to transit to non-Riemann geometry that contains (beside or instead of the metric) other geometric quantities. From this view, we discuss a Riemann–Cartan and an affine model of gravity and show them to be promising candidates of a theory of canonical quantum gravity.
引用
收藏
页码:1701 / 1716
页数:15
相关论文
共 50 条
  • [21] Global and local horizon quantum mechanics
    Casadio, Roberto
    Giugno, Andrea
    Giusti, Andrea
    GENERAL RELATIVITY AND GRAVITATION, 2017, 49 (02)
  • [22] Global and local horizon quantum mechanics
    Roberto Casadio
    Andrea Giugno
    Andrea Giusti
    General Relativity and Gravitation, 2017, 49
  • [23] Quantum gravity with torsion and non-metricity
    Pagani, C.
    Percacci, R.
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (19)
  • [24] Quantum Non-Gravity and Stellar Collapse
    C. Barceló
    L. J. Garay
    G. Jannes
    Foundations of Physics , 2011, 41 : 1532 - 1541
  • [25] Quantum Non-Gravity and Stellar Collapse
    Barcelo, C.
    Garay, L. J.
    Jannes, G.
    FOUNDATIONS OF PHYSICS, 2011, 41 (09) : 1532 - 1541
  • [26] Non-Perturbative Propagators in Quantum Gravity
    Knorr, Benjamin
    Schiffer, Marc
    UNIVERSE, 2021, 7 (07)
  • [27] A perspective on non-commutative quantum gravity
    Martins, Rachel A. D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (08)
  • [28] Quantum Gravity If Non-Locality Is Fundamental
    Kauffman, Stuart A.
    ENTROPY, 2022, 24 (04)
  • [29] Some aspects of black hole physics in loop quantum gravity
    Moulin, Flora
    15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 2029 - 2034
  • [30] Possible polarization and spin-dependent aspects of quantum gravity
    Ahluwalia, D. V.
    Gresnigt, N. G.
    Nielsen, Alex B.
    Schritt, D.
    Watson, T. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2008, 17 (3-4): : 495 - 504